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Abstract

Cavity Quantum Electrodynamics has long been a proving grounds for the study

of the interaction of light with matter. Historically the objective has typically been

to couple one atom to one photon as strongly as possible. While this endeavor has

yielded a variety of beautiful and groundbreaking results, we take a di↵erent approach.

Inspired by the quantum repeater scheme of Duan, Lukin, Cirac and Zoller, we

have built a cavity-ensemble experiment, where the strong coupling between the light

and the matter is achieved via the combination of the resonant enhancement of a

cavity and a collective enhancement of an ensemble. We investigate the capabilities

and limitations of such an approach through a number of experiments.

The first experiment we describe is a very-high-quality source of photon pairs

of opposite polarization, but otherwise nearly-identical spectral properties. We pro-

ceed to a high-fidelity single photon source, and carefully investigate the decoher-

ence mechanisms that limit the performance of such a system. Next we present the

cavity-mediated transfer of a single collective excitation between atomic ensembles,

and deterministic entanglement generation. Lastly, we present a heralded, polariza-

tion preserving quantum memory. All of these experiments depend critically on the

strong light-matter coupling a↵orded by the cavity-ensemble interaction, and require
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increasingly more sophisticated state control of the atoms.

Finally, we describe our new apparatus, combining a relatively long, high-finesse

optical resonator with a 2µm dipole trap. We focus on the technical details of stabiliz-

ing the narrow resonator, and discuss briefly a proposal for high e�ciency Quantum

Non-Demolition photon detection. We conclude with preliminary data demonstrating

single-atom detection.
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Chapter 1

Introduction

Quantum mechanics is one of the most complex and beautiful successes of the

20th century. It teaches us that an object can behave as both a particle and wave,

and that its state cannot necessarily be described without reference to the states

of other objects. The laws were formulated to satisfy observations performed on

natural systems, and indeed, quantum mechanics has been one of the most tested

and successful theories of all time.

Having built quantum mechanics from the ground up, one of the objectives moving

forward is to tear it down, and an e↵ort spanning disciplines seeks to probe the uni-

verse on length scales so fine that quantum mechanics falls apart. The approaches to

this endeavor range from high energy supercolliders[37] to precision measurements[86].

Another e↵ort seeks to build artificial systems whose very existence depends crit-

ically upon the mysterious laws of quantum mechanics. This push for Quantum

State Engineering has gained momentum in recent decades, with its most triumphant

moment coming with the creation of a ground-state matter-wave known as a Bose-

1
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Einstein Condensate[24, 2]. Among the many other early successes are the creation of

squeezed states of light[62], and the generation of entanglement between photons[44].

As time has passed, the e↵orts towards Quantum State Engineering have grown

in scale. Fueled by a proposal to use computers exhibiting quantum coherence for

e�cient factorization[110], e↵orts have taken o↵ to exact ever increasing coherent

control over the quantum states of individual particles, and the correlations between

them. Work in ion-traps has demonstrated first two[119], then four[99] and six[70]

particle entanglement.

Replacing atoms with photons, there exists a large body of work in quantum

optics. One of the earliest approaches to generating nonclassical light is the para-

metric downconverter[109]. The localization and control of single atoms[82, 66], and

single ions[59] within the waist and standing wave structure of a cavity has permit-

ted beautiful realizations of single-photon sources. Surface plasmon modes of gold

nano-wires have been coupled to quantum dots to e�ciently capture and transport

single photons[1]. Quantum dots have also been e�ciently coupled to photonic crystal

cavities for the generation of single photons[101] and nonlinear optics[38].

A parallel and closely related line of research has worked from the top down,

attempting to build quantum mechanical states from large ensembles of atoms. Fol-

lowing the creation of the Bose-Einstein condensate, the Mott insulator[50] and Fermi

degenerate gas[28] are some of the most stunning, though by no means only develop-

ments in this direction.

Employ the same top-down approach with thermal atoms, quantized collective ex-

citations (magnons) of atomic ensembles have been interfaced with optical photons. A
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prescription for entanglement distribution over lossy channels[34] using the magnons

for photon generation and storage, in combination with a proposal to perform quan-

tum computations using only linear optics[63], has created a lot of excitement about

the generation and control of single photons. It is into this honey-pot that I dipped

my paws for my doctoral research.

The proposal in [34], henceforth the DLCZ proposal, outlines a method to prob-

abilistically build up entanglement between distant nodes by generating magnons

entangled with single photons. In addition to the possibilities for the generation

of truly delocalized entanglement resources, this scheme connected electromagnet-

ically induced transparency[74] to quantum optics in an experimentally realizable

way. EIT provides a method of using lasers to coherently convert optical excitations

into atomic ground-state coherences (magnons) for storage, and back. While there

existed a proposal[42] to e�ciently manipulate single photons with EIT, DLCZ pro-

vided both a simple method to create such photons, and a practical application for

them.

In the years since the DLCZ proposal, there has been an explosion of exciting

work using atomic ensembles to generate, manipulate, and store single photons. In

the earliest demonstration of the technique[68], the single photons were generated with

very low e�ciency, and the corresponding magnons were short-lived. In the years that

followed, the entanglement within the atomic ensembles was better understood, and

e�ciencies[69, 3] and storage times[26, 35] increased.

The method of [34] was used in combination with quantum feedback in e↵orts to

generate single photons on demand[40, 77]. Using EIT, the Kuzmich group stopped
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a single photon and then restarted it after a programmable delay[15]. In the vein

of the original proposal, some of the most exciting work involves the generation

of entanglement between atomic ensembles, generated in either a heralded[19], or

deterministic[18] manner.

We entered this burgeoning field near, though not at, the beginning. While many

other groups focused on developing the fundamental building blocks of quantum re-

peaters, we initially focused on the fundamental physics underlying the magnon-

photon interface. By working in a cavity instead of free-space, we simplified the

light-matter interactions while at the same time achieving a number of technical

benefits. This has allowed us to build the highest e�ciency atomic-ensemble single

photon source to date[114], and to put forth some of the most convincing data de-

scribing the time dependence of magnon decoherence. In our more recent work we

have scaled up our e↵orts, working with two samples in our cavity. We have trans-

ferred single excitations between the two samples[113], and used them together as a

quantum memory for photon polarization[117]. Along the way, we have developed

tricks for optically pumping a sample in a (spatially) rotating frame, and adiabati-

cally transferring a single photon between atomic ensembles, through a cavity field.

This thesis documents that journey.

Chapter (2) serves as an overview of the formalism used to describe the cavity

QED and collective e↵ects relevant to all of the experiments discussed in the thesis.

Chapter (3) motivates the use of cavities and atomic ensembles for the creation of

single photon sources, and describes an important benchmark for such sources. In

chapter (4) we proceed to a description of the experimental apparatus used for all
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but the last experiment in this document. Chapters (5) - (8) motivate and then

describe in detail four di↵erent experiments performed on this apparatus. The first

is a spectrally narrow source of polarization separated photon pairs. The second is a

study of the temporal and spatial coherence properties of the magnons, culminating

in a very high fidelity source of single photons. The third is a demonstration of

cavity mediated transfer of a single magnon between two atomic ensembles, and inter-

ensemble entanglement generation. The fourth is a heralded, polarization preserving

quantum memory. Chapter (9) describes a new hybrid apparatus, built over the last

year and a half of my PhD. This apparatus includes a lens for achieving 2 µm spatial

resolution of the atomic cloud, as well as a high finesse cavity. I describe both the

technical challenges of designing, implementing and controlling the new apparatus,

as well as some preliminary results and the myriad new, exciting problems this new

apparatus has the potential to tackle. Chapter (10) concludes.



Chapter 2

Single Photons, Cavity QED and

Collective E↵ects

We begin with a brief introduction to cavity quantum electrodynamics (cQED)

as it applies to the experiments performed in this thesis. Throughout this thesis we

use non-hermitian Hamiltonians to model our real system, including dissipation. We

find this approach to be more intuitive than a master equation, although it must

be employed with care as non-hermitian Hamiltonians yield non-physical results

in situations where the actual physical system may be re-excited after a quantum

jump[75, 85].

Having acquired a handle on writing down Hamiltonians for cQED systems, this

chapter continues with a prescription for figuring out which of the myriad states al-

lowed by the Hamiltonian are actually relevant for the dynamics of interest. Finally

we introduce the many-atom Hamiltonian, and apply the prescription to the calcu-

lation of the cavity transmission. In the process we come across collective states for

6
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the first time. If you get one thing out of this chapter, this should be it!

2.1 Cavity QED

We first derive the Jaynes-Cummings Hamiltonian in the absence of dissipation,

and from it the vacuum Rabi splitting and the cavity shift. We next introduce

dissipation into the system, and derive the Wigner-Weisskopf limit as motivation for

the phenomenological Hamiltonian used thereafter. Finally we add additional atomic

levels to the Hamiltonian which are not coupled to the cavity mode, and investigate

briefly how they a↵ect the Hamiltonian for the system.

2.1.1 The Jaynes-Cummings Hamiltonian

It seems a bit pedantic to start with the procedure for second quantization of

the electromagnetic field, and so instead we will begin with fields quantized inside

of a 1-D box of length 2L, and periodic boundary conditions. This box will be our

cavity, and we will (for now) consider only one of the two polarizations states, and

ignore the two transverse dimensions. The higher order transverse modes may be

ignored because our cavity is not confocal, and hence these modes are not degenerate

in frequency with the TEM00 mode. As such we can selectively address our mode

of interest with appropriate choice of laser frequencies, and cavity tuning relative

to atomic resonance. Additionally, our cavity subtends a very small solid angle of

120µsr, and so the spontaneous lifetime of atomic excited state due to free-space

continuum coupling is not impacted by a Purcell-type e↵ect[92].
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The Hamiltonian for the cavity is:

Hcav/~ =
X

j

!cav
j a†

jaj (2.1)

Where aj (a) is the creation (annihilation) operator for a photon in mode j, with

energy !cav
j = c

2Lj. The operator for creation of a photon at position x, a†
x, is,

accordingly:

a†
x =

X

j

eikj

xa†
j (2.2)

with !cav
j /kj = c. For convenience, we will choose ~ = 1 from now on, except when

explicitly computing numerical values, in which case we will use SI units. It should be

noted that equation (2.2) actually defines the spatial “wavefunction” of the photon.

Things become interesting when we add an atom to the system. The atom has

many energy levels with highly non-uniform spacing, and so we will denote these

levels for now by |ji with energy !at
j . The atom Hamiltonian is then:

Hat =
X

j

!at
j |ji hj| (2.3)

Here !at
j is the energy of the eigenstate |ji. For alkali atoms the light-matter interac-

tion is almost exclusively between the single valence electron and the electromagnetic

field. We write the position operator for this electron as ~re = ~r0 + ~r, where ~r0 is the

location of the atom center of mass, and ~r is the o↵set to the location of the valence

electron. Because the extension of the electron wavefunction is much smaller than

the wavelength of the optical field (r ⇠ ab ⌧ �) we may make the electric dipole

approximation[100], and the interaction Hamiltonian may be written to lowest order

in ~r0 as[108]:
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Hint = �e~r · ~E(~r0) (2.4)

Where ~E(~r0) is the electric field within the cavity at the location ~r0 of the atom, and

is given by:

~̂E(~r0) =
X

j

~E0
j (a

†
je

�i~k·~r
0 + aje

i~k·~r
0) (2.5)

E0
j is defined such that the field is normalized to one photon energy1 :|E0

j | =
q

~!
j

✏
0

V .

The total Hamiltonian is now given by:

Htot = Hat + Hcav + Hint

=
X

j

!at
j |ji hj| +

X

j

!cav
j a†

jaj

+ e
X

k,l

|ki hk|~r |li hl| ·
X

j

~E0
j (a

†
je

�i~k·~r + aje
i~k·~r) (2.6)

The above equation includes the interactions of many optical modes with many atomic

levels. In practice our atoms will be cold relative to the lowest optical transition, since

852nm $ 17000K�Room Temperature. As such, our atoms will only populate the

lowest energy level2, |Gi ⌘ |j = 0i =
�

�62S1/2

↵

for Cs. This allows us to consider

solely the interactions between the ground state atom, and a particular optical mode

of interest, correspond to a particular excited state |Ei =
�

�62P3/2

↵

. We label the

cavity mode under consideration of energy !c with creation operator a†. Ignoring the

impact of all other cavity modes and atomic energy levels, and dropping the spatial

1Including the full spatial structure of the mode, the normalization is:
R

1
2✏0|E0

j

|2 dV = 1
2~!j

.

The factor of 1
2 on the right side of the equation arises because half of the photon energy is stored

in the electric field, and half in the magnetic field.

2We are ignoring hyperfine structure.
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phase factor whose role is to induce recoil upon scattering (important later), we find:

H1mode1transition = !a |Ei hE| + !ca
†a + g(|Gi hE| + |Ei hG|)(a† + a) (2.7)

Where we have defined g ⌘ ~d · ~E0, ~d ⌘ hE| e~r |Gi, and have chosen ~d = ~d⇤ without

loss of generality. Dropping counter-rotating terms we are left with:

HJC = !a |Ei hE| + !ca
†a + g(a† |Gi hE| + a |Ei hG|) (2.8)

This is the famous Jaynes-Cummings Hamiltonian of quantum optics[108].

Vacuum Rabi Splitting and Cavity Shift: Quantum Picture

When g = 0, the Hamiltonian is easily diagonalized giving near-degenerate pairs

|E,Ni, |G,N + 1i, with energies (N + 1)!c � �ac and (N + 1)!c respectively3, with

�ac = !c � !a. When g 6= 0 the interaction couples only the states within each pair,

and the eigenstates are somewhat more complicated:

|+, Ni = cos
✓N
2

|G,N + 1i + sin
✓N
2

|E,Ni

|�, Ni = � sin
✓N
2

|G,N + 1i + cos
✓N
2

|E,Ni

E±,N = (N + 1)!c +
1

2
(��ac ⌥

p

4g2(1 + N) + �2
ac) (2.9)

Where tan ✓N = 2g
p

1+N
�
ac

. Note also that |G, 0i is unperturbed by the coupling to the

cavity. From here it is straightforward to consider two limits4:

|�ac| � g: Here |+, Ni ⇡ |G,N + 1i, and |�, Ni ⇡ |E,Ni, for �ac > 0. The primary

e↵ect is a shift of the cavity and atomic resonance frequencies:

3|↵, Ni denotes that the atom is in state |F = ↵i, and the cavity contains N photons

4The situation is more complicated in the (unavoidable) presence of dissipation, as described in
the next section.
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E+,N ⇡ (N + 1)!c � �ac � (1+N)g2

�
ac

E+,N ⇡ (N + 1)!c + (1+N)g2

�
ac

These shifts are analogous to the stark shift an atom experiences in the presence

of an o↵-resonance laser beam[12], and exist even for the N = 0 manifold. In

other words, probing the cavity with a laser will reveal a shift in the transmission

resonance of g2

�
5. Observing the atomic scattering into free-space will reveal a

similar shift. As we will see, the optimal ratio of cavity-to-free-space scattering

will not reflect this shift, as it occurs on the so-called EIT resonance, rather

than the 2-photon resonance.

|�ac| ⌧ g: Here |±, Ni ⇡ |E,Ni±|G,N+1i
2 , with E±,N = ⌥g

p
1 + N . The N = 0 man-

ifold forms the vacuum rabi doublet, which reveals itself when the cavity is

probed in transmission as described in the next section.

2.1.2 Dissipation

If we wish to calculate cavity transmission spectra, or in fact how any of the

actual experiments performed in our lab take place, we need to learn how to include

dissipation in our models. This may seem like a technical detail, but in fact it is quite

fundamental. In order to probe a quantum-mechanical system, it must somehow

interact with the measurement apparatus, which is a classical device and hence has

many (a continuum of!) accessible modes. What this means is that the measurement

process is always dissipative, and hence irreversible. We knew this anyway from

5In the single-atom weak coupling limit it turns out that the observed cavity shift is independent

of intra-cavity photon number N
�

, so long as N
�

⌧ 8g

2

�2 .
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the collapse postulate, but we will find that for our experiments we rarely have to

apply the collapse postulate to anything but continua, which we map back to discrete

quantities using statistical inference.

In contrast, in recent experiments with Rydberg atoms in microwave cavities[47,

27], the measurement is performed on the atom after it has already left the cavity.

In these experiments the finite cavity lifetime  is not critical for the measurement

process. Because we collect our data as photon leakage from the cavity, we are in fact

dependent upon dissipation (finite ) for data collection.

Cavity Loss

We will begin by removing the atom from the system, and considering the e↵ect of

coupling the cavity mode to the outside world through transmission of a single cavity

mirror. The outside world will be modeled via a continuum of modes of a much larger

cavity. This derivation closely follows reference[108].

The cavity mirror may be thought of as beamsplitter, and so it is clear that

the equations defining the e↵ect of the interface must essentially be beamsplitter

relations. We will consider a single mode of the cavity with destruction operator a,

and a continuum of modes bj outside of the cavity, coupled to the cavity mode with

a coupling constants gj. The Hamiltonian for the system is then:

H = !ca
†a +

X

j

[!jb
†
jbj + gj(a

†bj + b†
ja)] (2.10)
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The Heisenberg6 equations of motion are:

ȧ = i!ca +
X

j

gjbj (2.11)

ḃj = iwjbj + igja (2.12)

Formally integrating the second equation and plugging it into the first yields:

ȧ = i!ca �
Z 1

0

d⌧
X

j

ei!j

⌧g2
ja(t � ⌧) + F (t) (2.13)

F (t) = i
X

j

gjb
j(t = 0)ei!j

t (2.14)

Moving to the continuum limit, and going into a frame rotating at !c for a yields:

˙̃a = �
Z 1

0

d⌧

Z 1

0

d!⇢(!)g(!)2ei(!�!
c

)⌧ ã(t � ⌧) + F (t) (2.15)

F̃ (t) = i

Z

d! g(!)⇢(!)ei(!�!
c

)tb!(t = 0) (2.16)

We now note that, for the first expression, the exponential factor oscillates very

rapidly away from ! ⇡ !c. As such we approximate ⇢(!)g(!)2 ⇡ ⇢(!c)g(!c)2, extend

the limits of the ! integration from [0,1) to (�1,1), and then note that the integral

yields a delta function. This limit is called the Wigner-Weisskopf approximation[108]

and leaves us with (upon leaving the rotating frame):

ȧ = i(!c + i


2
)a(t) + F (t) (2.17)

F (t) = i

Z

d! g(!)⇢(!)ei!tb!(t = 0) (2.18)

 = 2⇡⇢(!c)g(!c)
2 (2.19)

(2.20)

6This calculation could equally well be performed in the Schrodinger picture. We wish to show
that the result holds true for the entire harmonic oscillator ladder, and not just the first excited
manifold, and time evolving all relevant wavefunction amplitudes is more cumbersome than simply
working in the Heisenberg picture.
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We see that  is the spontaneous emission rate, consistent with Fermi’s Golden

Rule[100]. The classical analysis (see appendix (D)) reveals trivially that  = 2⇡ ⇥

c
2L/F , where the cavity finesse F = 2⇡

L
rt

, with Lrt the cavity round trip power losses.

It is interesting to note that the spontaneous emission enters into these equations

of motion as an imaginary contribution to the energy. We will be working in the

Schrodinger picture for much of the remainder of this thesis, and will put this imagi-

nary contribution to the energy into the Hamiltonian. This turns out to be equivalent

to the Quantum-Monte-Carlo Wavefunction approach to Hamiltonian evolution in the

presence of dissipation[85, 75]. It is valid in the limit that either a)the total quantum

jump probability over the evolution time is small, or b)the decay process leaves the

system in a state from which in cannot be re-excited into the manifold of interest7.

In the absence of photons initially in the modes b(!), F (t) is a Langevin noise oper-

ator which does not contribute to expectation values of normally ordered operators[108].

If there are initially photons in the mode, F (t) also incorporates their e↵ect upon the

system. We consider here a coherent drive field of amplitude8 ⌦(t)ei!t, which yields,

after a brief calculation (and ignoring the noise contribution which will drop out of

measurements):

ȧ = i(!c + i


2
)a(t) +

⌦(t)

2
ei!t (2.21)

7One might worry that insisting that the decay probability be small means that we may as well
drop the loss term, as we are insisting it not impact the dynamics. It turns out that, through a sort
of quantum-zeno e↵ect, the decay can impact the dynamics even in the absence of a quantum jump.
This strange e↵ect is discussed in detail in reference [75].

8This does not correspond to a d ·E, as we are speaking here of driving the cavity directly, in the
absence of an atom, and hence there is no d to speak of.



Chapter 2: Single Photons, Cavity QED and Collective E↵ects 15

Moving to a frame rotating with ! and finding the steady state solution ȧ = 0 yields:

E+
out /

⌦

a†↵ =

⌦
c

/2
/2

1 � i!c

�!
/2

(2.22)

Atomic Loss

We may follow the same procedure to add atomic loss, and arrive at the final

Hamiltonian, including both cavity and atomic loss, as well as cavity and atomic

driving:

HJC = (!a + i
�

2
) |Ei hE| + (!c + i



2
)a†a + g(a† |Gi hE| + a |Ei hG|) (2.23)

+ ⌦c(t)(a
† + a) + ⌦a(t)(|Gi hE| + |Ei hG|) (2.24)

In the interest of notational simplicity we will define �AB ⌘ |Ai hB|, which yields:

HJC = (!a+i
�

2
)�EE+(!c+i



2
)a†a+g(a†�GE+a�EG)+⌦c(t)(a

†+a)+⌦a(t)(�GE+�EG)

(2.25)

Here, � is the atomic spontaneous emission linewidth due to coupling to the free-

space continuum. The Wigner-Weisskopf process and Fermi’s Golden rule both yield

� = !3

a

d2

3⇡✏
0

~3c .

One can use the perturbative methods from appendix (B) to compute a cavity

transmission spectrum in the weak-driving limit:

E+
out /

⌦

a†↵ =
⌦

c

/2

1 + i �
lc

/2 + ⌘

1+i
�

la

�/2

(2.26)

Where �lX ⌘ ! � !X are the laser-cavity (X = C) and laser-atom (X = A)

detunings, and ⌘ ⌘ 4g2

� is the (unitless) single atom cooperativity parameter, discussed

later. A sample plot for �ac = 0, demonstrating the vacuum Rabi-splitting is shown

in figure (2.1).
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d

1
Transmission

Figure 2.1: Cavity transmission spectrum with, and without an atom. The magenta
curve is the cavity transmission spectrum as the laser is swept across the cavity
resonance, in the absence of an atom. The blue curve is the cavity transmission
spectrum in the presence of a single atom with  = � = g

2 . The cavity resonance has
been tuned to coincide with the atomic resonance.

In the strong coupling limit the dressed atom-photon eigenstates remain |±, Ni, as

defined in the absence of dissipation. These eigenstates now have lifetimes (N�1)+

+�
2 , reflecting the fact that the states are equal mixtures of (N photons and a ground-

state atom), and (N�1 photons and an excited state atom), with corresponding decay

rates. This may be computed either by explicit diagonalization of the N th excited

manifold of equation (2.25), or by analysis of the transmission spectrum, equation

(2.26).

2.1.3 Adding Additional Atomic Levels

Thus far we have considered a single two level atom coupled to a single mode

of an optical cavity. The experiments we actually perform involve atoms with three

or more relevant levels, although typically one of them is not directly coupled to the
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cavity9 Including these additional levels is trivial. For now we will simply add a single

metastable ground atomic level |F i of energy ~!F coupled to the atomic excited state

|Ei via a separate laser beam of Rabi-frequency ⌦P :

HJC = (!a + i
�

2
)�EE + !F�FF + (!c + i



2
)a†a + g(a†�GE + a�EG)

+ ⌦c(t)(a
† + a) + ⌦a(t)(�GE + �EG) + ⌦P (t)(�EF + �FE) (2.27)

2.2 Which States Are Relevant?

Throughout this thesis we will be working with systems of many atoms (intro-

duced shortly), each interacting with laser beams, and cavity modes, not to mention

magnetic and microwave fields. It may initially seem quite daunting to determine

which states of the myriad many-body states are actually relevant for the physics.

A system of N 3-level atoms has 3N total states, and yet the physics I will describe

typically only requires 3 of them. How could we possibly have known that those three

levels would be the ones that mattered?

I would like to share a relatively simple prescription which has served me very well

over the years. I do not know if this is how the pro’s do it, but it seems intuitive. It

stems from the fact that the time evolution of any arbitrary initial state |Ai is given

by e�iHt |Ai, so Taylor expansion reveals that the accessible subspace is limited to

the set
S

N2Z{HN |Ai}10.

9Strictly speaking, all levels are coupled to the cavity, if o↵-resonantly. If the coupling is far
enough o↵-resonance that I know it will not a↵ect the dynamics, I just ignore the coupling. When
in doubt compute the scattering rate and cavity shift due to an atom in that state!

10For Hamiltonians with time dependence this is not so obvious. In that case one computes the
subspace {S0} generated for H|

t=0, and computes a subspaces S
M

⌘
S

N2Z{H|
t=M�

N

S
M�1}. For

H with relatively simple symmetry, this will not be di↵erent from S0
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2.2.1 Recipe

1. Write Out the Hamiltonian: Write out the full Hamiltonian for the system.

If there are many atoms do not try to figure out which collective states are

relevant, just write out everything in the uncoupled basis.

2. Define Your Initial State: Your experiment presumably begins with an optical

pumping step. What state does your system start in? This is your initial

state. I will typically denote this state |0i, or in an e↵ort to be as confusing as

possible |Gi. Context and common sense may be the only tools at your disposal

to determine if |Gi refers to the state of a particular atom, or to the state of

the system as a whole.

3. Gram-Schmidt Branching Procedure: Apply H repeatedly to |0i, and determine

the state-space spanned by infinite iteration. Use the Gram-Schmidt procedure

to generate ortho-normal states |ji. It is easy to show that the Hamiltonian for

the full system may now be written in a convenient matrix form:

{Hreduced}ij ⌘ hi|H |ji (2.28)

It bears mentioning that I will often choose states |ji with physical significance,

rather than blindly applying the Gram-Schmidt procedure. Typically this amounts

to applying the orthnormalization procedure after each application of the H, and

choosing to define a state coupled by a laser beam as a separate state from one

coupled by a cavity emission. Applying this procedure carefully will even yield the

relevant collective states directly, as detailed below.
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Lastly, we will almost always make the rotating wave approximation for all coher-

ent drives, and then move into frames that rotate with the drive fields. This has the

e↵ect of removing the optical time-dependence from the Hamiltonian, and replacing

optical energy di↵erences with detunings[108].

2.3 Many Atoms in the Cavity

Suppose we would like to calculate the cavity transmission spectrum in the pres-

ence of an ensemble of atoms. We now introduce the Hamiltonian for many atoms

within a cavity[127]. We then derive the collective states, leaving further explanation

of their significance to later chapters.

2.3.1 Many Atom Hamiltonian

If we have many atoms within a cavity, each interacting with the cavity mode the

e↵ect is simply to add an index to the atomic operators which we must sum over.

For the time-scales, temperatures, and densities we are considering ( 10µs, � 10µk,

and  1011/cm3, respectively), direct ground state atom-atom interactions may be

ignored[120]. The Hamiltonian for two-level atoms interacting with a cavity in the

presence of a cavity probe beam, but no atom-pump, yields:

HJC =
X

m

{(!a + i
�

2
)�m

EE + gm(a†�m
GE + a�m

EG)}

+ (!c + i


2
)a†a + ⌦c(t)(a

† + a) (2.29)

It turns out that this Hamiltonian may be partially diagonalized very simply, by
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defining collective excitation operators ⌃AB ⌘ 1
g

coll

P

m gm�m
AB, gcoll ⌘

q

P

j g
2
j :

HJC = (!a + i
�

2
)⌃EE + gcoll(a

†⌃GE + a⌃EG)

+ (!c + i


2
)a†a + ⌦c(t)(a

† + a)

+ (!a + i
�

2
)⌥EE (2.30)

Here ⌥EE ⌘ [
P

m �
m
EE] � ⌃EE gives the number of non-collective excitations.

The interesting point here is that if we begin in state |0i and apply H repeatedly

according to the iterative procedure of the previous section, we never create any non-

collective excitations– we can drop that term from the Hamiltonian without a↵ecting

anything! In the limit that all atoms have equal coupling strength to the cavity

gj = g, gcoll =
p
Ng is the collective coupling, and we are left with:

H = (!a + i
�

2
)⌃EE + g

p
N(a†⌃GE + a⌃EG)

+ (!c + i


2
)a†a + ⌦c(t)(a

† + a) (2.31)

Thus we see that the collective excitations are coupled to the cavity with a rabi

frequency of g
p
N , which is

p
N times larger than the single atom coupling.

It is straightforward to show that [⌃GE,⌃
†
GE] = (1� N

e

N ). What this means is that

as long the majority of the atoms are in the ground state (Ne ⌧ N), the collective

excitations of the ensemble essentially behave as a classical harmonic oscillator[127]:

[⌃GE,⌃
†
GE] ⇡ 1. This is equivalent to the classical picture, as can be seen either by

the perturbative method of appendix (B), or by moving to the Heisenberg picture.

In the low excitation limit, the latter technique yields the equations of motion:

ȧ = i(!c + i


2
)a(t) + ig

p
N⌃GE + ⌦c(t)

⌃̇GE = i(!a + i
�

2
)⌃GE + g

p
Na (2.32)
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Setting ⌦c(t) = ⌦cei!l

t, and solving for the steady state response in a frame

rotating with !l, we arrive at 2.26 for the cavity transmission, with ⌘ ! N⌘.

One might wonder why we chose not to compute the transmission spectrum for

a single atom in a cavity this way as well. The key point is that [�†
GE, �GE] 6= 1,

and so a single atom is explicitly not a harmonic oscillator. Had we attempted to

use the Heisenberg picture we would have ended up with extra terms corresponding

to the saturation of the atom that we did not want, and made calculation di�cult.

Dropping those terms is equivalent to the assumption that the atom is mostly in its

ground state, which is precisely the weak (typically ⌧ 1 photon) driving limit which

we computed perturbatively using the method of appendix (B).

It bears mentioning that we eventually became interested in precisely the anhar-

monicity arising from the excitation of a single atom. An ensemble-cavity system

behaves like two masses coupled by a spring, and so reacts the same way, in pro-

portion to the drive, no matter how strongly or weakly it is driven. A single atom

coupled to a cavity has the potential to behave as a highly anharmonic oscillator cou-

pled to a mass. This system can be so nonlinear that it reacts di↵erently to a single

photon drive than two photon drive. This nonlinear behavior is the basis of photon

blockade[5] and two-photon filter[65] experiments, among a rich variety of others, and

forms part of our motivation for building a new system.



Chapter 3

Controlling Single Photons

Building upon the theory from the preceding chapter on cQED, this chapter will

begin with a discussion of ways to e�ciently couple single photon to matter. Begin-

ning with a geometrical picture of the collection e�ciency of a high NA lens, we will

build an understanding of why cavities enhance the emission/absorption probability

beyond the subtended solid angle. We will connect both the quantum and classical

pictures to the unitless single-atom cooperativity parameter which determines how

e�ciently a cavity (or freespace) detection system can hope to collect a single emitted

photon. We will then turn to the collective absorption and emission of radiation by

an atomic ensemble.

Finally, we discuss the intensity-intensity autocorrelation function g2(⌧), a quan-

tity which is ubiquitous in quantum optics, and specifically in the characterization

of single photon sources. This quantity is crucial for understanding both the time

dependence of the quantum dynamics, as well as the behavior of the source in the

presence of backgrounds.

22



Chapter 3: Controlling Single Photons 23
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Figure 3.1: Schematic of overlap between optical detection mode and atomic emission
mode. The optical detection mode is depicted in the density plot, and the atomic
dipole emission pattern as a contour plot.

3.1 Single Photon Interfaces

Imagine that one wants to make a single photon source. A single-atom is excited

via a ⇡ pulse, and allowed to spontaneously decay, emitting a single-photon. This

photon will be emitted according to a dipole pattern, with the maximum collection

e�ciency into a mode of waist w0 given by the overlap of the emission and detection

patterns (see figure (3.1)):

Pdet =

�

�

�

�

Z

~Adip(n̂) · ~A⇤
det(n̂) d⌦

�

�

�

�

2

⇡ 6

(kw0)2
(3.1)

Here ~Adip(n̂) and ~Adet(n̂) are the normalized atomic-dipole emission and detection
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mode waist w

Detection Mode

Atom size ~�

Detection Lens

Figure 3.2: Schematic of the detection of light emitted by a single atom. The detection
problem may be understood in terms of its time-reverse: absorption of light by the
atom. The atom has a resonant absorption cross section of � ⇠ �2, and the optical
field has been focused by the detection lens to a waist w. It is then clear from
geometrical considerations that the absorption probability, per photon, ought to scale
like �2/w2.

mode-functions, respectively. The above expression reveals that even when using a

lens which can generate a 1µm focal spot, only 10% of the light an atom emits will be

captured by the detection mode (at 852nm). Up to numerical factors, this is purely

an issue of solid-angles: To achieve anywhere near 4⇡ collection e�ciency requires

sub-wavelength resolution, and hence tremendously high quality lenses1. How can we

do better?

The answer is nicely motivated by first understanding the time-reversed process:

absorption. Pabs = Pdet, in the case of an optical pulse that fits spectrally within the

atomic resonance. This can be shown in a variety of ways, but most simply using the

atomic absorption cross section (see figure (3.2)):

�res =
3

2⇡
�2 =

6⇡

k2
(3.2)

One can then see that for a pulse of spatial cross section �pulse = ⇡w2
0, the absorption

1There has recently been very promising work using ellipsoidal mirrors for e�cient light
collection[10]
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probability will be: Pabs = �
res

�pulse = 6
(kw

0

)2 = Pdet.

There are then two obvious ways to increase the absorption probability that we

will consider separately: 1) Increasing the number of interactions between the light

and the atom, and 2) increasing the atom number. We will see that under appro-

priate circumstances, it is not only the absorption probability, but also the emission

probability that may be enhanced in this manner. The former approach is the realm

of cavity QED. The latter is the realm of collective excitation of atomic ensembles.

3.1.1 Multiple Interactions between Light and Matter: The

Cavity Approach

An optical pulse within a cavity2 will make on average F
2⇡ round trips3 before

leaving the resonator. Due to the resonator standing-wave structure, the intensity

is enhanced fourfold at anti-nodes of the standing-wave field, and the photon may

be emitted into the resonator in either of two directions. As such the absorption

probability ought to be enhanced by a factor of F
2⇡ ⇥ 4 ⇥ 2:

P cav
abs = ⌘ ⌘ 24F

⇡

1

(kw0)2
(3.3)

We have now defined the very important and unitless cooperativity parameter

⌘ ⌘ 24F
⇡

1
(kw

0

)2 . It is clear that equation (3.3) is only valid for ⌘ < 1. As we will see

2Strictly speaking, this is a poor analogy. An optical pulse which fits spatially within a cavity
must by definition drive many cavity longitudinal modes. This means that for any practical cavity
length, most of the pulse will be spectrally outside of the absorption line. We ignore this fact for
now, as it does not impact the conclusions, which can be derived more properly later.

3N
roundtrips

=
P1

n=0 P
n

=
P1

n=0(1 � L
RT

)n = F
2⇡
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Cavity

1 Atom Finesse         ~ 11Atoms

Figure 3.3: The increased directionality of a dipole radiator placed inside of a res-
onator. Left: Dipole radiator in freespace, demonstrating isotropic radiation. Right:
Dipole radiator in a resonator, modeled by 10 “image” oscillators, and demonstrating
increased directionality.

shortly, in general:

Pabs =
⌘

1 + ⌘
(3.4)

Having understood that absorption may be enhanced by a cavity, one might won-

der what role a cavity could possibly have in enhancing emission. One explanation is

that the cavity mirrors generate image dipoles which, if they oscillate with the proper

phase, will enhance the radiation into the cavity mode (see figure (3.3)). Another ex-

planation, which is more quantum mechanical in nature, is that the cavity enhances

the density of states, at particular frequencies, into the direction of the cavity mode,

and that this stimulates emission into the cavity. Both of these pictures are valid,

and both reveal that the atom will only have enhanced emission into the cavity at

particular frequencies. In the former case this is because the image dipoles must be

phased up, and in the latter case because the mode density only bunches up near the
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|G,0

|E,0

|F,1

δ la

Ωp

Γ

κ

δ laδ ac−

2g

Figure 3.4: Level Diagram for Single Atom Single Photon Source using a Cavity. A
laser beam generates the |Gi $ |Ei transition, while the cavity is near-resonant with
the |Ei $ |F i transition. The states shown in the diagram are the full states of the
atom cavity system: |X,Ni, where X 2 {G,E, F} is the atomic state and N is the
number of intra-cavity photons.

cavity resonant frequencies.

In order to derive the proper scaling of the emission into the cavity, we will resort

to a bit of quantum mechanics. We will analyze what happens when a ⇤-type 3-

level atom undergoes a spontaneous Raman transition within the mode of a cavity,

and compute the cavity and free-space emission probabilities for the first scattered

photon4:

Consider a 3-level atom as in figure (3.4), whose |F i $ |Ei transition is near

4alternatively if the spontaneous emission nearly always results in the atom being transferred to
a state other than |Gi, then we may be assured that the system will only emit one photon.
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resonantly coupled to the mode of an optical resonator mode with detuning �ac.

Suppose the system is initialized in the state |G, 0i, that is, with the atom in the

state |Gi, and the cavity mode in its vacuum state |0i. A laser beam drives the

|Gi $ |Ei transition detuned from resonance by �la, with a rabi-frequency ⌦p. The

non-hermitian Hamiltonian for the system, in matrix form, is:

H =

2

6

6

6

6

6

4

0 ⌦
p

2 0

⌦
p

2 I �
2 + �la g

0 g I 
2 + (�la � �ac)

3

7

7

7

7

7

5

(3.5)

Using the perturbative methods of appendix (B), we can compute the steady-

wavefunction in the limit that ⌦p is small5. In the notation of the appendix, the

“strongly coupled manifold” is formed by the states |E, 0i and |F, 1i, and its Hamil-

tonian is accordingly given in matrix form, as:

H0 =

2

6

4

I �
2 g

g I 
2 � �ac

3

7

5

(3.6)

The perturbation is given by V = ⌦
p

2 |G, 0i hE, 0| + H.C., and the initial state

 0 = |G, 0i. We may shift the laser detuning onto the energy of the  0:E0 = ��la.

We may now apply the method from appendix (B) to reach the result that:

P (Scattered to Cavity) =
�cav

�cav + �fs
=

C̃

1 + C̃
(3.7)

5“Small” here is in comparison to detunings, energy splittings, line-widths, and coupling
strengths.
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where

C̃ =
4g2

�

1 + (�
ac

��
la

)2

/2

�cav|�ac

=�
la =

⌦2
p

�

⌘

(1 + ⌘)2 + ( �
la

�/2)
2

�fs|�ac

=�
la =

⌦2
p

�

1

(1 + ⌘)2 + ( �
la

�/2)
2

(3.8)

So we see that when the laser is tuned to Raman scatter into the cavity, �ac = �la,

the probability that the atom will scatter into the cavity is given by
4g

2

�

1+ 4g

2

�

. This

equation would be the same as equation (3.4), if only:

4g2

�
?
= ⌘ ⌘ 24F

⇡

1

(kw0)2
(3.9)

The amazing fact is that one can show that equation (3.9) is true! To do so g, �

and  must all be written in terms of the atomic dipole matrix element d, and the

relevant cavity parameters. This shows that the quantum mechanical calculation of

scattering probability into the cavity gives a result which is not inherently quantum

mechanical at all, but rather depends only upon cavity geometry, and mirror quality!

We anticipated this on qualitative grounds, but it is neat to see it borne out by

calculation.

It must be mentioned that g and � may have di↵erent dipole matrix elements d

depending upon the branching ratio of the excited state. Put another way, an atom

only has the maximal resonant absorption cross section given by equation (3.2) for

the strongest transition (|Fg = 4,mF = 4i ! |Fe = 50,mF = 5i for the Cs D2 line).

One may observe the maximal cross section scaled down by ( �
la

�/2)
2 once Rayleigh

scattering dominates, eg �la is greater than �fine, the excited state fine structure.
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This occurs due to a sum rule on the coupling matrix elements requiring the sum

of squares equal the maximal value for any ground state, if excited state fine- and

hyper-fine structures are summed over[116].

Detuning Independence of the Cavity Enhancement

Perhaps the most important message to take away from this section is that an

atom may e�ciently scatter into a cavity at any detuning from atomic resonance, as

long as the cavity is tuned to the two-photon resonance �ac = �la. We proved this in

the general case, above, but it is informative to consider the detuned and resonant

limits separately:

Detuned Scattering: In the large detuning limit, the e↵ect of the cavity is to en-

hance the scattering rate into the resonator mode by a factor of ⌘, compared to the

freespace scattering rate, �sc =
⌦2

p

4�2
la

�. We can show this by treating the detuned

scattering process as a two-photon rabi frequency coupling the |G, 0i ! |F, 1i, with

a rabi frequency ⌦2 = 2⌦
p

g
2�

la

. |F, 1i has a linewidth , and so the e↵ective two-photon

scattering rate is ⌦2

2

 = ⌘�sc, once we identify ⌘ ⌘ 4g2

� .

Comparing rates, this means that the atom will Raman scatter into the cavity

with a probability ⌘
1+⌘ , as we calculated before.

Resonant Scattering: In the on-resonant case, the cavity g-coupling opens an elec-

tromagnetically induced transparency window such that the freespace scattering is

suppressed by a factor 1
(1+⌘)2 compared to what it would be in the absence of the

cavity �sc =
⌦2

p

� . The cavity scattering, on the other hand, is only suppressed by a
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factor of ⌘
(1+⌘)2 ⇡ ⌘�1 compared with �sc.

We can show this by directly (in the limit ⌘ � 1) computing the dark state,

and its linewidth. The dark state of the system (in the weak pumping limit) will be

|G, 0i � ⌦
p

2g |F, 1i. This state decays out of the cavity at a rate
⇣

⌦
p

2g

⌘2
 = �

sc

⌘ . This

population must be scattered out of the atomic excited state population PE, so we

must have PE ⇥ 4g2

 = �
sc

⌘ . The free-space loss rate PE ⇥� is thus given by �
sc

⌘2

. Again

comparing rates, we arrive at a cavity scattering probability of ⌘
1+⌘ .

If the on-resonant process is performed at a time-varying intensity which begins

low and ends higher than g, we enter the so called dark-state rotation limit. As long

as the rotation is performed adiabatically, the expected retrieval e�ciency remains

the same: ⌘
1+⌘ .

That the cavity enhancement works at all detunings from the atomic turns out to

be critically important in practice. This is because we will often need two di↵erent

scattering processes to emit photons into the cavity– one for a Raman transition from

F = 3 ! F = 4, and one for F = 4 ! F = 3. While both processes turn out to be

near atomic resonance, they will di↵er in detuning by �HF � 4⌫FSR = 130MHz. If

we were forced to work on atomic resonance to reach the strong atom-cavity coupling

regime, we would not be able to use these two transitions simultaneously.

Cavities and Causality– Action at a Distance?

It may seem almost magical that a cavity can a↵ect the emission properties of

an atom. The atom, after all, does not even know that the cavity mirrors are there
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when it begins emitting. The key is that the image dipoles take a time �1 to build

up: the cavity is expected to generate of order F
2⇡ image dipoles, and one dipole is

generated per cavity round trip. Each cavity roundtrip requires a time 2L
c , and so

the image dipoles begin radiating after a time F
2⇡

2L
c = �1. This is another way to

understand that the enhancement window is only  wide in frequency, and reveals why

the resonant enhancement of the cavity (compared to a free-space mode of identical

waist) depends only upon the cavity finesse, and not  or � explicitly.

In light of this understanding it is clear that exciting an atom as described at the

beginning of this chapter by a ⇡ pulse would not result in the enhancement of cavity

scattering, unless  > �, as the excitation process would be too rapid and the image

dipoles would not have time to build up. This would of course be borne out directly

by time evolution of the quantum state under the hamiltonian (3.6). According to

[23] the result is: P (Scattered to Cavity) = ⌘
1+⌘


+� , which can be understood as

rapid rabi-flopping in and out of the cavity. The probability of losing the excitation

into freespace is then set by the rate of freespace loss relative to the rate of cavity

leakage.

3.1.2 Atomic Ensembles and Super-Radiance: An Introduc-

tion to Magnons

A simple (classical) counting argument reveals that if a single-atom has a prob-

ability P1 ⌧ 1 of absorbing a single photon which is passing it, N atoms will have

a probability PN ⇡ 1 � e�NP
1 . Running the process backwards, it seems that an

atomic ensemble may be stimulated to emit a single photon with very high probabil-
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ity into a particular spatial mode. Is this true, or have we been fooled by the inherent

irreversibility of dissipative processes?

It has long been known that a Bragg reflector made of crystalline planes can scatter

light from a particular mode into another well-defined mode. This phenomenon results

from the (classical) constructive interference of the wavelets produced by periodically

located scattering sites. What remains unclear, then, is how to prepare an ensemble

of atoms such that it can emit precisely one photon, while maintaining the crystalline,

directional properties a Bragg grating.

In 1956, R.H. Dicke predicted a phenomenon called called super-radiance[30]

wherein an ensemble of atoms confined to within a radiation wavelength will ra-

diate either more or less strongly depending upon the quantum phases between the

di↵erent excited atoms6. In a subsequent paper[31], he predicted that radiation into

a particular mode could be enhanced or suppressed for a spatially extended sample,

depending upon the relative phases of the atoms. By properly choosing which su-

perposition of atoms is excited, one may enforce that the sample emit into a desired

(and optically thick) direction. This physics was observed experimentally in a num-

ber of systems[94, 104]. Although the Dicke papers focus on spontaneously occurring

super-radiant pulses in the absence of any quantum-state engineering, what they es-

sentially describe is the quantum analog of a Bragg grating. We will call these quanta

magnons, because the phase information of these collective excitations is stored in

electron and nuclear spin.

6Strictly speaking, it was the quantum phases between the states of the system where di↵erent
subsets of atoms were excited



Chapter 3: Controlling Single Photons 34

Magnon Readout

The essential physics is actually very similar to the enhanced directionality of a

single atom scattering into an optical resonator, except that the phased up dipoles

are real, rather than images generated by the cavity mirrors. For a more detailed

understanding we consider a system which is in a state 7 ↵†(�k) |⌦i, where |⌦i =

|GG.....Gi⌦ |0ic is the “vacuum” state, with no atoms excited, and no photons in the

cavity. ↵†(�k) is the magnon creation operator:

↵†(�k) =
1p
N

N
X

j=0

ei
~�
k

·~x
j�j

FG (3.10)

We expect that this state will act as a quantum Bragg grating capable of imparting

a momentum ~~�k to a single Raman-scattered photon, when driven by a laser on the

|F i $ |Ei transition. This phenomenon may be analyzed quantitatively[34, 49], but

qualitatively one sees that the scattered field amplitude for a system initialized into

the state | i is a superposition of the scattering amplitudes for each atom separately8,

adjusted for the phase of the incoming (pump) beam, and the outgoing(scattered)

photon.

If each atom separately scatters with an amplitude A(n̂) into the direction n̂, then

the total scattering amplitude is:

Atot(n̂) =
1p
N

N
X

j=0

ei(
~�
k

+~k
pump

�n̂k)·~x
jA(n̂) (3.11)

It is clear that in the limit of a sample of infinite spatial extent, the terms from all of

7How it arrived in this state will be discussed shortly.

8Technically, we should include reabsorption in our calculation. We do so in the analysis for our
cavity-ensemble system, both later in this chapter, and in chapters (5) to (8). This is unnecessary
for our qualitative understanding here.
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the atoms interfere constructively only for n̂k = ˆkdet
r =

~k
pump

+ ~�
k

k , that is:

~kpump
w � ~kpump

r = ~kdet
w � ~kdet

r (3.12)

When this phase-matching condition is met, the collectively enhanced scattering am-

plitude is given by:

|Atot(n̂read)|2 = N |A(n̂read)|2 (3.13)

Hence we have an N-fold enhancement in the scattering rate in this direction. In all

other directions, the various terms interfere destructively, leaving:

|Atot(n̂ 6= n̂read)|2 = |A(n̂)|2 (3.14)

Thus we see that the ratio of scattering into the mode of interest, to the rest of

4⇡ is enhanced by a factor of N. A proper calculation for an atomic ensemble with

finite extent yields that the ratio of scattering into the mode of interest, compared

with the rest of 4⇡, is 6N
(kw

0

)2 . With enough atoms this may be made � 1, and the

sample will almost always scatter the single photon into our mode of interest. Su�ce

it to say that by preparing this super-radiant state one can induce an ensemble to

scatter a single photon into the preferred direction with high probability.

Magnon Generation

Having successfully described the enhanced directionality of magnon readout, the

remaining question is how to prepare a magnon | MAGNONi. The solution to this

problem was provided by Duan, Lukin, Cirac, and Zoller[34]. Beginning with a system

optically pumped into the state |GG...Gi, a laser beam is applied on the |Gi $ |Ei

transition with wavevector ~kwrite. The atoms will begin to scatter on the |Gi !
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|Ei ! |F i transition, and detection of a photon scattered into the ~kdet direction

does not definitively reveal which atom made the transition, only that the system has

been projected into the state | MAGNONi, with �k = ~kwrite � ~kdet. This is precisely

the collective state, or magnon, that we wanted to generate.

One might worry about the impact of atoms scattered on the |Gi ! |Ei !

|F i transition into other directions than ~kdet. This will be addressed thoroughly in

chapter (6), but it su�ces to say that these scattering events do not produce collective

excitations which will be e�ciently read-out into the n̂read direction, and serve only

to reduce the participating atom-number. A serious concern arises only when enough

atoms are scattered into the |F i state that they begin to absorb strongly. As long

as 6
(kw

0

)2 ⌧ 1, this requires many atoms and there exists a regime where it is not a

concern9.

3.1.3 Combining Cavities and Ensembles

For a variety of reasons, some of them historical, we chose to enhance our light-

matter interaction using the combination of a cavity and an ensemble. This has a

number of benefits which will be described in more detail in the upcoming chapters:

1. Lower Necessary Single-Atom Cooperativity: We can tolerate ⌘ ⌧ 1, so long

as N⌘ > 1. This substantially mitigates the formidable technical requirements

typical of making a high-finesse, small-waist resonator su�cient for single-atom

strong-coupling.

9It turns out that the optical depth in the |F i state is given by n
w

, the number of photons
scattered into the mode of interest, up to a numerical factor. As a consequence n

w

must be kept far
below 1 to avoid absorption e↵ects.
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2. Less Spatial Localization: Single atom Cavity QED experiments obtain stable

strong coupling by localizing the atom to a cavity anti-node. With an ensemble

one makes use of the average coupling and so localization is at least initially

not required.

3. Less Stringent Atom Number/Density Requirements: Preparing a MOT which

is optically thick is complicated by radiation trapping e↵ects. When much of

the optical depth comes from the cavity finesse enhancement, one can make due

with a far less optimized MOT.

4. Optical Pumping: Because the sample is optically thin in all directions except

along the cavity axis, high quality optical pumping of the entire sample may be

achieved without being limited by reabsorption.

5. Theoretical Simplicity: The basic model of this system requires only a 3-state

hamiltonian[48]. In contrast, the comparable free-space system must be mod-

eled by coupled di↵erential equation[3, 74]. The physics is very much the same,

but the cavity model is in some ways conceptually simpler, as it deals only with

time dependent, and not spatially and time dependent fields.

Preparation of Intra-Cavity Magnon: The Write Process

The procedure for preparing a collective excitation of an atomic ensemble within

a cavity (see figure (3.5)) closely mimics the procedure in free-space. The ensemble

is initially optically pumped such that all of the atoms are in the state |Gi. The

so-called write beam is applied on the |Gi $ |Ei transition, with the cavity tuned to
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!

!

|E

|G
|F

Figure 3.5: Schematic of Magnon Generation Process. An optically pumped sample,
prepared in the state |Gi, is illuminated with a weak laser beam (left) on the |Gi !
|Ei transition (center). While most photons are scattered into free-space, detection
of a photon Raman-scattered into the cavity mode on the |Gi ! |Ei ! |F i transition
heralds the creation of a magnon (right). In the magnon diagram, the color reflects
the phase written into the atom (arising from the pump phase), while the intensity
reflects the amplitude (arising from the cavity standing wave).

the |Ei $ |F i transition. A photon scattered into the resonator mode which leaks

through an end-mirror and is detected reveals that an atom has been transferred

|Gi ! |Ei ! |F i, but does not reveal which atom, projecting the system into the

state ↵†(�k) |⌦i. As before ↵†(�k) is the magnon creation operator. Now �k = ~kw �~kc,

with ~kc the cavity direction10, and ~kw the direction of the write pump beam.

Because the write-process is not collective, the probability that any particular

photon scattered on the write transition will go into the cavity mode is given by ⌘
1+⌘ ⇡

⌘, for ⌘ ⌧ 1. The write process thus creates magnons randomly (and infrequently),

but heralded by a single photon scattered into the cavity mode.

10For now we are assuming a running wave cavity for simplicity. This will be corrected in chapter
(6).
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Readout of Intra-Cavity Magnons: The Read Process

Having initialized the system in the state ↵†(�k) |⌦i, we now read it out. A readout

laser is applied on the |F i $ |Ei transition, and the cavity tuned to the |Ei $ |Gi

transition. The Hamiltonian for the system is:

H = (!a + i
�

2
)⌃EE + g

p
N(a†⌃GE + a⌃EG)

+ (!c + i


2
)a†a + ⌦P (t)(⌃FE + ⌃EF )) (3.15)

Here the collective creation operators are:

⌃EG =
1p
N

X

j

ei
~k

r

· ~x
j�EG

⌃EF =
1p
N

X

j

ei
~k

c

· ~x
j�EG (3.16)

Beginning in the state ↵†(�k) |⌦i and generating the manifold of coupled states, as

per chapter (2), we discover that as long as ~kw +~kr = 0, there are only three coupled

states:|fi ⌘ �FE�EG |⌦i,|ei ⌘ �EG |⌦i, and |⌦i. Noting that, as discussed above, the

free-space scattering sees no-collective enhancement and proceeds at the single-atom

rate, we arrive at the hamiltonian:

H =

2

6

6

6

6

6

4

0 ⌦
p

2 0

⌦
p

2 I �
2 + �la

p
Ng

0
p
Ng I 

2 + (�la � �ac)

3

7

7

7

7

7

5

(3.17)

This is precisely the same Hamiltonian that describes a single atom scattering into

a cavity, except that g !
p
Ng and so we expect the single photon retrieval e�ciency
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Read Pump
  Beam

Figure 3.6: Schematic of Magnon Readout Process. Applying a phase matched read
pump on the |F i $ |Ei transition allows the magnon prepared in the write process to
collectively scatter a single photon into the cavity on the |F i ! |Ei ! |Gi transition.
The collective enhancement is essential because the single-atom cooperativity is low,
so a single atom in the |F i state would Raman-scatter into the cavity with probability
⌘ ⌧ 1.

on Raman resonance to be11:

P (Scattered to Cavity) =
N⌘

1 + N⌘
(3.18)

One may view this expression as compensation for small ⌘ by large N , or com-

pensation for small N by large F12. In practice we take the middle ground- we use

moderate F and moderate N to get near unity probability for scattering into the

cavity!

It is also interesting to note that equation (3.17) is actually a better approximation

11We also expect that the retrieval e�ciency should be independent of detuning from atomic
resonance �

la

, just as in the single atom case.

12It might appear that reducing w
c

would be helpful as well, but this is not the case as long as
the atom cloud is larger than the cavity waist. In that limit N ⇡ ⇡w2

c

L⇢
at

, so N⌘ ⇡ 24FL⇢at

k

2 , which
is independent of the cavity waist!
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for a collective excitation strongly coupled to a cavity than it is for a single atom

strongly coupled to a cavity. This is because after a free-space scattering event,

the collective excitation is destroyed13, leaving only the non-collective atom-cavity

interaction, which is negligible for ⌘ ⌧ 1. In contrast, a single atom with ⌘ � 1 will

still be strongly coupled to the cavity mode, even after a free-space scattering event,

and so a master equation needs to be used, rather than a non-Hermitian Hamiltonian.

3.2 An Introduction to g2(⌧ ): Verifying Anti-

Bunching of a Light Field

Given the variety of di↵erent systems which may act as single-photon sources,

it is imperative to come up with consistent ways to characterize such sources that

apply to as many di↵erent physical realizations as possible. In later chapters we

will investigate such properties as spectral width, repetition rate, retrieval e�ciency,

and indistinguishability, among others. There is one specification, however, which is

often misunderstood and deserves a separate explanation. That specification is the

intensity-intensity autocorrelation function, denoted g2(⌧), defined according to[108]:

g2(⌧) ⌘ h: I(t)I(t + ⌧) :i
hI(t)i2 (3.19)

This function describes how the intensity of a beam I(t) is correlated with itself, from

one moment to the next. h: B :i denotes the expectation of the normal ordering of B,

13Free-space scattering destroys collective excitations as a consequence of the random phase im-
parted on the atom by the scattering process, or alternatively the entanglement of the scattering
atom with the scattered field, with di↵erent phases for di↵erent atoms.
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with respect to the photon creation and annihilation operators. Any classical beam

must satisfy[97, 83]:

g2(0) � 1 (3.20)

g2(⌧)  g2(0) (3.21)

We will focus primarily on the former equation. Classically, this equation says

that when a classical beam is split on a beam-splitter, fluctuations above the mean

on one output port will be accompanied by fluctuations above the mean on the other

output port. This is to be contrasted with a source of single photons: when a single

photon impinges upon a beamsplitter it must chooses to go one way or the other,

and so the two output ports will be anti-correlated. Practically, it turns out that

assuming that I(t) is a non-negative real valued function I(t) 2 R is su�cient to

prove the above inequalities: this says that any violation comes explicitly from the

quantized nature of the electromagnetic field.

3.2.1 Proof of Equation 3.20 in the Case of Classical Light

We begin by defining the variance of I(t), averaged over n experimental realiza-

tions Ij(t), to be:

�2
I(t) ⌘ 1

N

X

j

[Ij(t) � 1

N

X

k

Ik(t)]
2 (3.22)

It is clear that �2
I(t) � 0, and so expanding the right side of equation (3.22) we

arrive at:

1

N

X

j

Ij(t)
2 +

1

N

X

k

Ik(t)
2 � 2

N2

X

j

Ij(t)
X

k

Ik(t) � 0 (3.23)
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Collecting terms yields:

1

N

X

j

Ij(t)
2 � [

1

N

X

j

Ij(t)]
2 (3.24)

Identifying hI(t)2i ⌘ 1
N

P

j Ij(t)
2, and hI(t)i ⌘ 1

N

P

j Ij(t), , and dividing through

by the second term squared, we find:

hI(t)2i
hI(t)i2 � 1 (3.25)

We have thus proven equation (3.20), assuming only that the intensity of the light

field is a real quantity I(t).

3.2.2 Equation 3.20 in the Case of Squeezed Light

Before attempting to understand why equation(3.20) may be violated by squeezed

light, it seems sensible to attempt to justify the form of the equation– specifically the

normal ordering. To do this, it is simplest to think about how one would attempt to

distinguish a single photon from a weak coherent beam. The simplest way to do this

is with a Hanbury-Brown-Twiss (HBT) interferometer[62], as shown in figure (3.7).

The operating principle of an HBT interferometer relies upon the fact that if

a single photon impinges on a beam-splitter, it choose to either be transmitted or

reflected, but not both. As such, one of the two detectors will click, but never both-

detection events are anti-correlated. In contrast, when a coherent beam impinges

upon a beamsplitter, both of the output arms contain an attenuated coherent beam,

and detection events in the two output arms are uncorrelated.
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Coherent State

Fock State

-OR-

a)

b)

Figure 3.7: Schematic of a Hanbury-Brown Twiss Interferometer. (a) When a coher-
ent state is incident on the beamsplitter, the classical wave properties of the coherent
state ensure that unentangled coherent states of reduced amplitude leave through the
two output ports, resulting in no correlation between the output arms. (b) When a
single photon Fock state is incident on the beam splitter, a simple calculation reveals
that the photon must go one way or the other, and so the output arms are anti-
correlated. This is a reflection of the fact that a Fock state in an HBT interferometer
behaves like a classical particle, while a coherent state behaves like a classical wave.
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In order to quantify this, let us compute the the rate of coincidences between the

two arms into a bin of size T, R1&2, and compare it with the rate of coincidences

expected for uncorrelated beams,R1R2T . One may show that in the limit T ! 0, the

ratio may be expressed as:

gBC ⌘
⌦

b†bc†c
↵

hb†bi hc†ci (3.26)

Where b† (c†) creates a photon in the transmitted (reflected) mode, at the location of

the photon counting module. We could continue to work in the output modes, which

would allow us to show that an incident coherent state is converted into unentangled

coherent states in the output arms. Instead, we will compute gBC by referencing

back to the input mode of the beamsplitter. Using beamsplitter relations and as-

suming that the beamsplitter is lossless and couples the input mode equally into the

transmitted and reflected modes, we may make the transformation:

b† =
1p
2
(a† + v†)

c† =
1p
2
(a† � v†) (3.27)

Here a and v destroy photons in the two output modes of the beam-splitter. This

transformation yields (with the additional assumption that the mode v is in a vacuum

state) the relation:

gBC =

⌦

a†a†aa
↵

ha†ai2 (3.28)

Which is precisely the expression given in equation (3.20). Thus we see that the

quantity that we were naively interested in measuring, relating to whether a single

photon goes one way on a beamsplitter, corresponds directly to the inequality (3.20).

We can now compute gBC for a variety of input states:
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Coherent State |↵i : gBC = 1 (3.29)

Fock State |Ni : gBC = 1 � 1

N
(3.30)

In spite of the fact that the math works out, one might still wonder why it is

physically that the numerator of the correlation function is a†a†aa = n̂2 � n̂, rather

than a†aa†a = n̂2, as would be naively expected from the expression in the output

(transmitted and reflected) basis of the beamsplitter. The reason is that the former

expression prevents us from double-counting single-photon events. If, for example,

the state of the optical field were given by:

| i = A0 |0i + A1 |1i + A2 |2i (3.31)

Then the numerator would be 2P2 in the former case, and 4P2 + P1 in the latter

case, with Pj ⌘ |Aj|2. Since the numerator was designed to count coincidences, the

latter expression is clearly wrong! The g2 of a weak pulse, where equation (3.31)

applies, is thus given by:

g2(⌧ = 0) =
P2

1
2P

2
1

(3.32)

This expression will be applied extensively to the data analyzed in the succeeding

chapters.
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3.2.3 Insensitivity of the g2 Function to Losses

Here we will show that the value of the g2 function is insensitive to losses in the

detection path14 This is convenient because it means that one can demonstrate that

a given light-source is non-classical in spite of the inevitable losses arising from finite

detector quantum e�ciency, fiber coupling, cavity out-coupling, interference filters

and so forth.

An attenuator may be modeled as a beamsplitter inserted into the mode[14]. If

the mode to be attenuated has creation operator a†, then the transformation is:

u† =
1p
2
(
p
✏a† +

p
1 � ✏b†)

l† =
1p
2
(
p

1 � ✏a† �
p
✏b†) (3.33)

Where u† creates a photon in the output mode, after the loss, l† creates a photon

in the loss channel, and b† creates a photon in the dark port. Here ✏ is the power

transmission coe�cient of the attenuator. The g2 of the output mode is given by:

goutput2 =

⌦

u†u†uu
↵

hu†ui2 (3.34)

Substituting equation (3.33) into equation (3.34), and assuming that the dark

port of the beam splitter is in the vacuum state, yields that:

goutput2 = ginput2 (3.35)

That is, we have shown that losses do not a↵ect the value of g2. Assuming that the

dark port of the beam splitter is in the vacuum state corresponds to the assumption

14The expected value is unbiased by detection path losses, however the measured variance is

sensitive to path losses– the amount of time necessary to acquire good enough statistics scales as
l�n, where l is the loss per photon, and n is the number of coincident photons necessary to make
the measurement. This time requirement is one of the primary limitations upon what experiments
we can perform.
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that no light is coupled into the output mode from whatever the attenuating element

is. We use interference filters and various other light insulation procedures to ensure

that this is in fact the case.

The above conclusion may be reached from the more intuitive expression for g2,

equation (3.32). In the presence of an attenuator, one can easily show that to lowest

order in P2/P1: P1 ! ✏P1, P2 ! ✏2P2. Inserting this into equation (3.32) yields that

g2 ! g2, as we have just shown.

It is worth mentioning that in the presence of backgrounds that enter after the

loss channel, and hence disturb the state of the optical field, the g2 function is not

insensitive to losses. This will be elucidated in chapter (6).

3.2.4 Experimental Measurement of the g2 Correlation Func-

tion

In practice, g2 is measured with the two-detector Hanbury-Brown-Twiss configu-

ration described previously. The two main reasons the for this are detector dead-time,

and detector after-pulsing.

After a single photon counting module detects a photon, the avalanching medium

needs to be actively quenched for some period of time before it can detect another

photon. For the Perkin-Elmer SPCM’s that we use, this dead -time is 50ns. What

this means practically is that when measuring with a single detector, the light always

looks perfectly anti-bunched (g2 = 0) on a 50ns time scale, because the detector

simply cannot click twice during this time interval. Using two detectors and looking

for coincidences between them bypasses this concern.
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The other concern is detector after-pulsing. When a single photon triggers an

avalanche in an SPCM, this avalanche must be actively quenched, as mentioned above.

Sometimes this active quenching leaves trapped charges in the active region of the

photodiode which subsequently initiate further avalanching. This typically occurs

with a probability of approximately 1 ⇠ 2% over a period of about 1µs [81]. These

after-pulsing events may easily be mistaken for a two-photon coincidence, enhancing

g2. Again looking for coincidences between two separate detectors is a good way to

circumvent this di�culty.

There used to be a concern about the broadband light-pulse emitted by an SPCM

during detection inducing false correlations. This e↵ect has been strongly suppressed

by the use of single mode fibers and interference filters such that we do not worry

about it any more.
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Experimental Setup

4.1 Magneto-Optical Trap

The work I will present in this thesis only requires micro-kelvin temperatures to

operate, not the nanokelvin temperatures typically necessary for a degenerate-gas

experiment. What this means is that the Cesium atoms used may be captured in

a magneto-optical trap[93] and polarization gradient cooled, and are then at a low

enough temperature for the experiment to proceed.

The MOT runs on the |Fg = 4i ! |Fe = 5i transition of the Cesium D2 line
�

�

�

62S 1

2

E

!
�

�

�

62P 3

2

E

at 852nm. This transition has the benefit of being closed, and

lacking a dark state, so cooling proceeds uninterrupted until an atom is scattered o↵-

resonantly to the Fg = 3 ground state via the Fe = 4 excited state. The MOT beams

are detuned ⇠2 atomic linewidths (� = 2⇡⇥5.2MHz) below the atomic resonance, in a

compromise between minimizing the MOT temperature and maximizing the number

of trapped atoms. Our MOT consists of 3 retro-reflected beams of 1” diameter, each

50
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containing ⇠ 7mW of power.

When the atoms are depumped to Fg = 3, a repumping beam on Fg = 3 ! Fe = 4

repumps them e�ciently to Fg = 4. The tuning of this beam relative to atomic

resonance is far less crucial, as the atoms are only infrequently scattered to Fg = 3.

The atoms come from a combination of a Cs vapor cell, and Cs getters (man-

ufactured by SAES). The benefit of this arrangement is that the bulk of the Cs is

provided by the vapor cell which has an e↵ectively unlimited supply of Cs, with quick

adjustment to vapor pressure provided by the getters. The disadvantage of a vapor

cell is that changes in Cs partial pressure have a 1/e time ⇡ 1day, the time it takes for

the Cs to coat the vacuum chamber walls and reach equilibrium with the ion pump.

On a day-to-day basis, then, the precise amount of Cs in the chamber is adjusted

with the getters, which may be controlled via a current of a few amperes.

It should also be mentioned that on the sole occasion that we accidentally opened

the vapor cell valve completely we ended up with a MOT that appeared to fill our

CCD camera completely (several cm rms size)! This quantity of Cs shorted the cavity

piezos to the vacuum chamber walls and coated the cavity mirrors to the point that

the cavity finesse dropped well below 100. All of this required only a week or two!

In the system used for previous cavity cooling experiments[6], the MOT coils were

outside of the vacuum chamber. One of the primary changes made by me and James

was the placement of new MOT quadrupole coils within the vacuum chamber. These

square coils have 125 turns each, and inner side of 3.8cm, outer side of 7.4cm sepa-

ration of 10.2cm. At a current of 2A, they produce a gradient of ⇠ 6.7G/cm at the

center of the vacuum chamber along their axis, and 3G/cm in directions perpendicu-
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lar, which is more than su�cient for a MOT. These coils require no water cooling. In

contrast, the old coils required ⇠ 20A of current and water cooling and induced huge

eddy currents in the vacuum chamber[6]. The primary reason for the internal coils

was in fact minimization of chamber eddy currents. Although the internal coils couple

to the same eddy current modes as the external coils, the coupling is geometrically

suppressed and so the amplitude of the currents (and hence the magnetic field broad-

ening) is smaller. It should be noted that for the experiments that were sensitive to

magnetic field stability we simply loaded the atoms into an optical lattice and waited

100ms for fields to ring down completely. For less sensitive tasks such as polarization

gradient cooling, a few ms of wait time was su�cient to reach the requisite stabilities.

One might be concerned that having quadrupole coils inside of the vacuum cham-

ber would introduce so much trapped volume and dirt into the system that a good

vacuum could never be achieved. This was not the case. The coils were made of

Kapton-dipped 1mm OD wire from Allectra. The coils were sonicated in Acetone

for cleaning. During the bake, the coils were heated briefly to 400�C, and baked

continuously at 230�C for 24 hours by running large currents through them, to help

remove any residual water. This procedure was su�cient to reach the pressures de-

scribed below, although we do find that whenever the vacuum chamber is opened it

is judicious to run the coils back up to 5A during the subsequent bake– the pressure

always spikes briefly, indicating that the coils managed to trap some water while the

chamber was open.

The magnetic fields may be shimmed with external bias coils, which can produce

DC fields up to ⇠ 1G without overheating, and may briefly be run as high as several
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gauss. We use these coils to move the quadrupole zero into the mode of the optical

cavity, as well as to zero the fields for Polarization Gradient Cooling and choose the

appropriate bias field for our QIP experiments. They may be switched in ⇠ 1 ms.

4.2 Vacuum System

The actual vacuum chamber arrangement is shown in figure (4.1). It has two

large 63
4 -inch windows through which the horizontal MOT beams propagate. The

four 23
4 -inch diagonal windows are for the exclusive use of the the diagonal MOT

beams. The top and bottom 41
2 -inch windows are for cavity coupling, as described

later. The chamber has electrical feedthroughs for cavity piezos, mirror heaters, and

the quadrupole coil current. It also has a titanium sublimation pump (Varian TSP

916-0061) and an ion pump (Varian StarCell 75). The ion pump is run continuously,

and the TSP is run once every few months. When operated properly we can reach

pressures of order 10�10 Torr. More details on the vacuum chamber and vacuum

system may be found in Adam Black’s thesis[6].

Haruka and I discovered that ion pumps are very sturdy. When we vented the

vacuum chamber to argon in preparation for the installation of the new apparatus (as

described in chapter (9)) there was a really sickening crunching-crackling noise. We

immediately realized that we had forgotten to turn o↵ the Ion Pump! We frantically

turned it o↵ but whatever damage there was to be done had already (presumably!)

occurred. A call to Varian revealed that the noise was a short across the the plates

of the ion pump through the Argon. I still do not quite know why it was ok, but

some combination of the Argon vent and the brief duration of the short meant that
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Figure 3.1: Schematic of main vacuum chamber, indicating the coordinate system
referred to in all experiments, as well as the directions of propagation of the MOT
beams. The large flanges shown are 63

4 inches in diameter.

through the center of the top window thus passes vertically through the center of the

vacuum chamber and out the center of the bottom window.

The ion pump, in combination with occasional use of the titanium sublimation

pump, give pressures in the vacuum chamber between 10�10 and 10�9 torr. The

source of cesium in vacuum is a set of four cesium getters from SAES. In typical

MOT operation, a current between 3.5 and 5 A is sent through one getter at a time.

We have observed typical getter lifetimes of 500–1000 hours of operation in this range

of currents.

The magnetic field gradient needed to produce the MOT is created by two coils in

anti-Helmholtz configuration, wrapped around the large vacuum chamber windows.

The coils are made of copper refrigerator tubing and are water-cooled. Each coil

Figure 4.1: Main Vacuum Chamber, with MOT beams shown.

everything was fine when we pumped back down. The technicians at Varian suggested

we might need to bake the pump to 400C to clean it, but this turned out not to be

necessary in our case. I think the moral, echoed over and over during my PhD, is

that you ought be as careful as you can be, but that you will often be pleasantly

surprised by how over-engineered and stable commercial devices tend to be. If only

our Pound-Drever-Hall locks were so robust1!

1They are now, thanks to Haruka and Renate.
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4.3 Laser Systems

4.3.1 Laser Diode Technologies

Shortly after my arrival we began a switch to Distributed FeedBack (DFB) lasers,

and have now replaced every External Cavity Diode Laser (ECDL) in the system with

a DFB. The Eagleyard DFBs that we use have linewidths of 1 ⇠ 2MHz, run single

mode, and have similar cost to the JDS-Uniphase DBRs we used previously. They

are quoted for powers up to 150mW, though we never run the diodes above half of

their specified power as it seems to substantially shorten their lifetimes. At present

the only remaining DBR in the system is the Repumper. Each diode comes with a

built-in TEC and thermistor, and requires none of the realignment characteristic of

an ECDL. While the 1 ⇠ 2MHz linewidth is greater than an ECDL, it is less than

the Cs D2 atomic linewidth of 5.2MHz, so it is good enough.

For reference, the frequency tuning of a typical Eagleyard DFB laser is approxi-

mately 1GHz/mA. This means that a current source with a noise of 1nA/Hz
1

2 for the

laser will broaden a DFB to a linewidth of approximately 3MHz2! All of our current

controllers are homemade and seem su�cient for our purposes– in situations where

we need narrower linewidths the lasers may be locked to a narrow optical cavity, as

described in chapter (9).

As the experiment has grown and we have needed more exotic wavelengths it has

become clear that DFBs are not always as well behaved as those from Eagleyard at

852nm. We have seen Eagleyard 937nm diodes spontaneously die, or lase on two

2�⌫
Lorentzian

= ⇡S2, where S2 is the laser frequency noise in Hz2/Hz
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additional wavelengths 10nm away. There is a new generation of DBR diodes which

the manufacturer Photodigm claims to be intrinsically more stable (guaranteed single

mode), of narrower linewidth (500KHz gaussian peak, 200KHz lorentzian tails), and

more robust to current spikes. Which of these technologies will win out, only time

will reveal.

4.3.2 Laser Frequency Stabilization

Our laser locking system uses a single “Reference” laser stabilized to the Fg = 3 to

Fe = 2 transition of the Cs D2 line via a Doppler-Free[52] dichroic atomic vapor laser

lock (DAVLL)[53] to a Cs vapor cell. The frequency o↵set of each of the other lasers

is then measured by observing its beatnote with the reference laser, and frequency-

stabilized using a frequency o↵set lock– allowing us each laser at an arbitrary detuning

relative to the atomic resonances (up to the bandwidth of our detection electronics).

Reference Lock

The Reference lock, shown in figure (4.2) has gone through a number of iterations

over the years. The final, and most stable configuration was placed in a light tight

box, and run in a DAVLL configuration. Once generated, the DAVLL error signal

is sent to a PID controller which adjusts the Reference laser current to stabilize the

laser frequency to the ⇠ 1MHz. The PID controller has a bandwidth of a few KHz.

The basic operating principle of most Doppler-Free spectroscopic systems is the

same. These systems are used to generate a spectroscopic signal with a linewidth un-

broadened by the Doppler shifts due to the motion of the (typically room temperature)
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Figure 4.2: Doppler-Free DAVLL configuration.

atomic absorbers. A weak probe beam measures the absorption of the sample, which

is pumped by a strong counter-propagating beam derived from the same laser. A

nonlinear e↵ect (saturation, optical pumping, etc) is observed when the pump and

probe paths interact with the same velocity class. This gives rise to a Doppler-

broadened error signal as well as sharp Doppler-Free features. In our case the probe

beam is a few µW, and the pump a few mW.

Unlike Pound-Drever-Hall[32] and Frequency-O↵set[107] locks, the DAVLL signal

is measured directly at DC, and so any DC power drift (due to room lights, or stray

light from laser beams switching on and o↵) translates directly into a frequency shift

of the reference laser. This was the reason that we placed the lock in its own isolated

light-tight box.

Sensitivity to DC o↵sets is also the reason that we chose to switch from po-

larization spectroscopy[125] to Doppler free DAVLL[53]. Polarization spectroscopy

operates based upon absorption of a single probe beam in the presence of an optical

pumping beam. Because the measurement is not di↵erential, changes in temperature

(and hence Cs density) a↵ect the shape of the signal, and varying laser power rescales
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the signal. As such, over the course of a day we have observed shifts of order 3 MHz,

which substantially a↵ect the performance of our MOT, PGC sequence, and even

quantum optics experiments. In contrast, the DAVLL signal derives (largely) from

di↵erential absorption of right- and -left circularly polarized light due to a magnetic

field. As the signal is di↵erential, it is insensitive to both laser power and cesium

density fluctuations. In atoms with large nuclear spin like Cesium, polarization spec-

troscopy provides a substantially larger signal, owing to coupling coe�cient variation

across mF levels. Our experience has been that there was plenty of SNR even in

the DAVLL configuration (shown in figure (4.3)), and so the decreased drift of the

DAVLL made the switch worthwhile.

4.3.3 Frequency O↵set Locking

All other lasers were frequency-o↵set locked to the reference. The working princi-

ple is that each laser is overlapped with the reference laser, and the resulting beat-note

is detected on a photodiode. After amplification3 the beatnote is sent to a frequency-

to-voltage conversion circuit, and then to a PID controller which adjusts the lasers

current to stabilize its frequency. These locks may have anywhere from a few kHz

to a few tens of kHz of bandwidth. The frequency-to-voltage conversion takes place

in one of two di↵erent ways. The first is a so called phase-locked-loop converter, and

the second is a delay-line. The former has the benefit of a substantially more linear

conversion, at the expense of locking range and bandwidth. We will discuss them

3For the MOT laser, which is tuned to the F
g

= 4 to excited state transitions, the beatnote
is near 9.2 Ghz, and must be down-converted via mixing with a 9.2 GHz Phase Locked Oscillator
before further manipulation can take place.
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Figure 4.3: Doppler-Free DAVLL signal. The reference laser is tuned across the
Fg = 3 !E transitions. Fg = 3 ! Fe = 2 is the right-most transition, and Fg = 3 !
Fe = 4 the left-most. In between we see Fg = 3 ! Fe = 3, and cross-over resonances.
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separately.

Phase Locked Loop Frequency to Voltage Conversion

The MOT and Repumper beat-note frequencies are converted to voltages via a

so-called PLL lock. This is a bit of a misnomer, as the MOT and Repumper lasers are

still frequency locked, and not phase locked, to the Reference laser. The phase locked

loop simply acts as a frequency-to-voltage converter. Our beat-notes are typically in

the range of 250�1000 MHz, and are divided down to 1�4MHz with a high-frequency

divider from RFbay (FPS-240-4). They are then further divided to 100 � 400KHz

with a TTL divider IC. Finally, this signal is fed into an LM567 tone decoder IC,

which is essentially a phase locked loop on a chip. This IC locks its internal VCO to

the divided-down beatnote. The control voltage to the IC is linear in the VCO (and

hence beatnote) frequency, and acts as the output voltage of the frequency-to-voltage

converter (see figure PLL VFC).

PLL’s typically have a locking range of an octave, and this situation is no excep-

tion. We typically tune our PLL’s to lock in the range from 400 � 800MHz, which is

approximately the accessible excited-state hyperfine structure from either Fg = 3 to

excited states (Fe = 2 to Fe = 4) or Fg = 4 to excited state(Fe = 3 to Fe = 5). The

PLL has a small bandwidth due to the time required to measure the frequency of a

200kHz to a few percent. This limits the lock bandwidth to a few kilohertz.

The primary advantage of this method is that the MOT and Repumper frequencies

may be adjusted in real time during a single experimental run. This allows us to retune

the MOT and repumper from the optimal frequency for capturing atoms in a MOT
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to the optimal frequencies for Polarization Gradient Cooling, in ⇠ 1ms.

Delay Line Frequency to Voltage Conversion

For lasers whose frequencies need not be tuned so linearly, or over such a large

range, we typically perform the frequency-to-voltage conversion using a delay-line and

mixer, which act as a Mach-Zehnder interferometer and square-law detector. The RF

beatnote is split on an RF power-splitter, with one path sent directly to one input

of a mixer, and the other path sent to the other input of a mixer through a delay

line (BNC cable) (see figure (4.4)) of length L. One may show that the output of the

mixer, VIF is given by:

VIF / V 2
BN [cos!BN t][cos!BN(t � L

c/n
)]

/ V 2
BN

1

2
[cos

!BNL

c/n
+ cos!BN(2t � L

c/n
)] (4.1)

Where VBN is the amplitude of the beatnote at frequency !BN . If the mixer output

is low-pass filtered at a frequency far below !BN , we are left with:

VLP / V 2
BN

2
cos

!BNL

c/n
(4.2)

The output signal clearly depends upon the frequency of the beatnote, and has zero

crossings every �fBN = c/n
2L , which for a BNC (with n = 1.5) of length 40cm gives

�fBN = 250MHz. The laser can thus be frequency-stabilized at each of these zero

crossings. To allow continuous tunability, we mix the beatnote with a tuneable VCO

before the power splitter. This allows convenient tunability over a few hundred MHz,
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Figure 4.4: Schematic of a Delay-Line-Lock frequency to voltage converter. This
figure is adapted from [6]

limited by the filters chosen to remove one of the sidebands created by mixing in the

VCO.

The delay line frequency-to-voltage converter provides much larger bandwidth

than the PLL converter both because the beatnote signal is not divided down before

frequency discrimination, and because all of the components in the converter are fast

microwave components. We have built delay-line based frequency locks with nearly

a MHz of bandwidth, though this is almost never necessary.

From a practical standpoint, it is rather important that both ports of the mixer

be saturated– otherwise the signal that comes out will depend upon the laser powers

rather than just their frequencies. It is also important to lock to the zero crossings

of the error-signal, as these have minimal sensitivity to power drifts.

Aside on Beatnotes

When generating a beatnote between two lasers, it is important that the two

beams be well enough aligned that only a single (spatial) interference fringe of the two

laser beams impinge on the measurement photodiode. This is because the beatnote

corresponds to the spatial shifting of the interference fringes, and so having more
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fringes on the photodiode decreases the amplitude of the beat signal. We find that it is

thus best to couple the two beams whose beatnote we wish to form into a single-mode

fiber, which is then aligned onto a Hamamatsu G4176 30ps risetime photodiode. All

non mode-matched backgrounds are thus filtered out, and alignment of the beatnote

is then reduced to polarization alignment and fiber-coupling.

To reach the shot-noise limit on beat-notes, one must have enough power that

the laser shot noise is greater than the Johnson noise of the detection circuit, in our

case the terminating impedance of R = 50⌦ of the first amplifier: R
q

2⌘
det

P
~! e >

p

4KBTR(10NF/10dB � 1), or P > 1mW for ⌘det ⇡ .7, NF ⇡ 3dB for a typical

photodiode/amplifier combination. In this limit one expects a shot-noise limited

signal to noise ratio of: SNR = ⌘
det

p
P

1

P
2

2~!�
BN

. For P1 = 1mW, P2 = 10µW, �BN = 2MHz,

we expect SNR ⇡ 80dB. In practice, we find that a good beatnote has ⇡ 60dB of

signal to noise. It is unclear if this is limited by technical (intensity) noise of the

lasers, or something else. 60dB is more than enough to run the frequency-to-voltage

converters stably, and so we have not investigated this further.

4.3.4 Cavity and Cavity Locking

Although the di↵erent experiments in this thesis used slightly di↵erent cavities,

they all consisted of two 1-cm diameter dielectric mirrors in a near-confocal config-

uration 6.6cm apart. The mirrors were coated for finesses ranging from 100 ⇠ 400,

resulting in cavity linewidths from 22 ⇠ 5MHz, respectively. In the later experiments

the mirrors were also wrapped in Kapton dipped copper wire from Allectra, which

was used to heat the mirrors up by 20 ⇠ 40 �C to prevent the deposition of Cesium,
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which tended to spoil the cavity finesse over a period of months.

The problem of cavity locking arises from the necessity of ensuring that the atomic

ensemble interacts with a particular mode of the optical resonator, at a particular

detuning from atomic resonance. The length of the cavity is controlled to bring the

cavity mode of interest to the appropriate frequency relative to the atomic line. We

adjust the length of the cavity with a high-voltage single-layer piezo from Channel

Industries.

We measure the cavity resonance frequency using the Pound-Drever-Hall (PDH)

scheme[32, 8]. In order to minimize the impact of the locking light on the atoms,

we chose to lock the cavity using a mode 4 cavity free spectral ranges (9.062GHz)

to the blue of the atomic line. This is a large enough detuning that at the requisite

locking power of ⇠ 100µW, o↵-resonant scattering did not destroy the MOT or ruin

the PGC. It is too small a detuning to filter the lock light to below the single photon

rate of our quantum optics experiments, so the locking beam must be extinguished

(by AOM) and the lock “held”, for the ⇠ 2ms during which the actual experiment

takes place.

The actual locking scheme depends upon a laser (the cavity laser) frequency-o↵set

locked to the Reference at the desired cavity resonance frequency. This laser is then

sent through a resonant EOM (3⇥3⇥20mm3 LiNbO3 crystal from Castech) at 13MHz

that adds FM sidebands. The resulting Pound-Drever-Hall error signal, measured in

reflection o↵ of the cavity, is used to lock the optical cavity to the cavity laser (via

the piezo) with a bandwidth of a few KHz.

We chose to coat one mirror of our cavity for much higher transmission than the
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other4. This allowed us to ensure that most (⇠ 90%) of photons generated by our

experiments left through the cavity mirror coupled to our Single-Photon detection

apparatus. By contrast, the PDH setup was coupled to the other cavity mirror, and

so very little of the locking light actually entered the cavity. As a consequence we

needed a lot of power for the locking beam, and became very sensitive to residual

amplitude modulation (RAM)[124] and other o↵sets in our detection path. We ulti-

mately compensated for the RAM by directly demodulating a portion of the beam

sent to the cavity, and subtracting that signal from the actual PDH signal. Proper

balancing of gains gave us a factor of ⇠ 10 RAM suppression.

4.3.5 Detection Path

Detection of the single photons leaking through the high transmission mirror of

the cavity was performed using fiber-coupled single photon counting modules mode

matched using a single lens and adjustable fiber collimator to the high transmis-

sion output of the cavity. The single photon counting modules (SPCM’s) come

from Perkin-Elmer, and the models we used have dark count rates as low as 250/sec

(SPCM-AQR 13), quantum e�ciency of 40% at 852nm, and dead-time of 50ns after

a photon detection, for active quenching of the avalanche. This dead-time gives rise

to a saturation of the detector at count rates approaching 106/s, with an absolute

maximum rate of 107/s. We see up to 80% fiber-coupling e�ciency of the TEM00

mode of the optical resonator into the detection fiber, with 1000 : 1 suppression ratio

between TEM00 and TEM10 fiber coupling, and 50 : 1 between TEM00 and TEM20.

4Precisely how much higher varies from one of the later discussed experiments, to another.



Chapter 4: Experimental Setup 66

We like to operate the experiment with the room lights on, which poses something

of a conundrum given that we are simultaneously attempting to detect single pho-

tons. We use 2nm wide interference filters centered around 852nm to filter out room

lights- these filters have 60 � 80% transmission. Additionally, the detection fibers

are all single mode, which prevents much room light from being coupled into them

anyway. Once the interference filters are in place in front of the fiber collimator, the

primary remaining source of backgrounds is free-space coupled into the cladding of

the detection fibers, through the sheath. We attenuate the cladding modes by coiling

2 or 3 loops of the fiber with 3” diameter. We wrap these loops in black electrical tape

to prevent more light from being in-coupled. This seems to introduce negligible loss

for the core-guided mode, and substantial losses in the cladding modes, essentially

eliminating room-light-induced backgrounds.

4.3.6 Laser Power Control

We switch lasers on and o↵ with a combination of 80MHz resonant free-space

AOMs from Isomet, and 20GHz broadband fiber-coupled EOMs from Isomet. The

AOMs have the advantage of actually extinguishing the beam entirely, with extinction

ratio of 50dB when operated with homebuilt drivers. This extinction is limited pri-

marily by the non-gaussian tails of the optical beam resulting from spatial aperturing.

These AOMs have di↵raction e�ciencies near 90% when used with large (w⇠ 500µm)

beams. When operated with w⇠ 200µm beams, the rise time may be as short as 70ns

with turn-on delays as short as 200ns, limited by acoustical wave propagation within

the Piezoelectric crystal.
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The alternative, which we have adopted more recently, is broadband EOMs. These

devices may be used to put phase modulation sidebands on a laser at an arbitrary

frequency from DC to 20Ghz, with the maximal sideband fraction (⇠ 34% at mod-

ulation index 1.84) requiring only a few volts. These EOMs allow a sideband to be

switched on or o↵ with in less than a nanosecond, using an appropriately fast switch

(CMCS0947 from Custom Microwave Components, with total latency of 3ns). The

sideband extinction is limited by the RF-switch and hence may reach 60dB, or even

better when used in conjunction with an AOM. The primary downside to this ap-

proach is that the carrier remains present even once the sideband is extinguished,

often necessitating an AOM in series. Until recently, it seemed that using four mod-

ulators in an I-Q configuration was the only way to direct more than 34% of the

power into a particular sideband (as dictated by FM theory). A recent paper from

Kasevich et. al[58] demonstrated that by using a saw-tooth generated by a nonlinear

transmission line one can put up to ⇠ 90% of the power into a particular sideband.

4.4 Fast Pulse Sequencing

For the majority of slow applications, standard National Instruments analog (PCI-

6713) and digital (NI PCI-6534) output cards are used to control the experimental

sequence. Our digital and digital output cards have a maximum resolutions of 50ns

and 1µs, respectively. To update at this speed our sequences a)must be quite short

(we run out of memory on the card) and b)take a long time to download to the card.

As such we generally run the cards at a 500KHz update rate.

For fast applications we use the PulseBlaser ESR-Pro card from SpinCore Tech-
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nologies. This card has a minimum pulse width of 2.5ns, with a resolution of 2.5ns as

well5. Unlike the NI cards, it does not update on every clock edge- instead it updates

only when a channel has an edge, and so requires much less memory. In fact it only

has memory for about 8000 edges, but this is deceptive because it has built in facilities

for looping structures which require very little memory. As such the maximum edge

count is much higher, as long as the desired sequence is periodic, as it is in our case

(Write-Read-Repump).

4.5 Photon Binning and Detection

For photon correlation measurements we use industry-standard P7888 card from

FAST ComTec GmbH. Given a start trigger, the card then provides the times when

pulses come in on each of four-channels. These channels are called stop triggers, but

this is deceptive as the card can register an arbitrarily large number of stop triggers.

In fact it stops detecting pulses only after a preset total time.

What makes this card special is its resolution. In two-channel mode, it provides

a resolution of 1ns, and in four channel mode 2ns. Either of these timescales is much

faster than the dynamics of the processes which we study, ⇠ ��1 = 30ns. All of

the correlation functions and high-resolution time traces displayed in this thesis were

obtained using this card, in combination with single-photon counting modules.

5The shortest interval between pulses is 12.5ns.
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4.6 Experimental Sequence

The experimental sequence typically consists of loading the MOT for ⇠ 100ms,

and then extinguishing the MOT and Repumper beams briefly while the quadrupole

fields are switched o↵, and the bias fields zeroed. The MOT and repumper are

then retuned to the appropriate frequencies for the Polarization Gradient Cooling,

and turned back on at new intensities. The PGC runs for approximately 10ms after

which the actual experiment on the now cold (⇠ 10µK) Cs atoms may begin. After the

completion of the experimental sequence the MOT and repumper lasers are retuned

to the appropriate resonances for cooling and trapping, and the quadrupole fields are

turned back on.



Chapter 5

High Brightness Source of

Fourier-Limited Photon Pairs

Our group’s first e↵ort (prior to my arrival) to implement a Single-Photon source[7]

resulted in a relatively high single-photon conversion e�ciency of 44(3)%. However,

because the cavity used for the experiment was nearly confocal, the phase matching

condition permitted the “write” and “read” photons to be emitted into di↵erent

transverse resonator modes[6]. This prevented us from verifying the single photon,

or even non-classical character of the scattered fields. In spite of this, there was clear

experimental evidence of readout phase matching (see figure (5.1)) as per equation

(3.12), so it seems clear that the DLCZ physics of collective excitations was dictating

the behavior of the system.

As detailed in chapter (4), among the many changes that were made in building the

“new” apparatus was to install a new, non-confocal cavity. This chapter details our

first successful e↵orts to generate non-classical light using an atomic ensemble within

70



Chapter 5: High Brightness Source of Fourier-Limited Photon Pairs 71

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Fr
ac

tio
na

l P
ho

to
n 

R
ec

ov
er

y 
E

ffi
ci

en
cy

-30 -20 -10 0 10 20 30
Angle from Antiparallel (mrad)

 Fractional Read Recovery 
vs

Angle Between Write and Read Pumps

!

Cavity Axis

Figure 5.1: Phase matching between Write and Read pumps, for experiment in [7],
with a near-confocal cavity. The observed 1/e2 half angle of � = 0.9(1)mrad is sub-
stantially less than the cavity TEM00 opening half-angle of �/⇡wc = 2.7mrad. This,
in combination with the 10mrad pedestal, indicates emission into a superposition of
higher-order cavity modes.

this cavity: A source of pairs of spectrally identical photons, of opposite polarization.

The work described here is the topic of the publication[118]:

• J. K. Thompson, J. Simon, H. Q. Loh, and V. Vuletic, “A High-Brightness

Source of Narrowband, Identical-Photon Pairs” Science 313, 74 (2006)

5.1 Photon Pairs

Our source of photon pairs, taken as a black-box, has a lot in common with a type-

II parametric downconverter: Incoming light is converted into pairs of photons which

are spatially (type I/II)[109] and/or polarization (type II)[98] separated. These pairs

are emitted at random (nearly) uncorrelated times, and are generated infrequently.
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Parametric down-converters are solid-state, relatively simple, and stable. In contrast

our source requires an atomic ensemble laser cooled to 10µK within a properly sta-

bilized optical resonator, inside a high-vacuum chamber. What do we get for our

e↵orts? Spectral width of less than a MHz, and maximal spectral brightness.

Some of the most exciting applications of single-photons and photon pairs are

quantum communication and long distance entanglement generation[33, 71, 95]. For

these applications it is very important that the photons be able to interact with

atomic ensembles for storage and manipulation. As such, it is convenient to generate

photons of bandwidth �⌫BW  �, and for alkali atoms, � ⇠ 2⇡ ⇥ 5MHz. Without

filtering, in the best case an SPDC will generate photon pairs with spectral widths

of order nanometers[41]. There has been a lot of progress towards making narrower

SPDC by spectral filtering and cavities[67, 106, 64]. The source in [64] produces pairs

with a brightness 0.3pairs/(s MHZ mW), which at 1W of pump power is 300pairs/(s

MHZ). As we will see, our source is much brighter.

Prior to our work, the Harris group at Stanford created a source very similar to

ours, but in freespace [3]. Our results represent an improvement in retrieval e�ciency

and non-classical character of the generated light-field. Perhaps more importantly, we

also characterized the spectral width of our source via heterodyne spectroscopy, and

verified the indistinguishability of the photons via a Hong-ou-Mandel[54] interference

experiment. A similar Hong-ou-Mandel experiment was performed by the Yamamoto

group, using a quantum dot in a micro-pillar cavity[101] and since our work, has been

demonstrated in freespace atomic ensemble[40, 16] and ion[79] experiments.
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5.2 Photon-Pair Generation Procedure

An atomic ensemble is optically pumped such that all of the atoms are in some

initial state |Gi. They are weakly driven to Raman-scatter on the |Gi ! |Ei ! |F i

transition. There is another laser incident on the atoms in |F i which induce them to

rapidly Raman scatter back to |Gi through an auxiliary excited state
�

�

�

Ẽ
E

.

In the case of an optically thin sample in free-space, this arrangement would have

the e↵ect of causing atoms to infrequently scatter “write” photons into freespace, and

then rapidly scatter corresponding “read” photons into freespace. Already this is a

source of pairs, but unfortunately it is very di�cult to collect photons scattered into

4⇡, and so an attempt to measure correlations, except in the case of extremely weak

drive strengths1 would fail.

Addition of a cavity, even one with ⌘ ⌧ 1, may increase the optical depth of

the sample to > 1. While the write photons are only emitted into the cavity with

a probability ⇡ ⌘ ⌧ 1, the read photons experience a collective enhancement for

scattering into the cavity mode, as long as the “write” and “read” pumps are counter-

propagating. All the atoms which scattered write photons into freespace do not

create collective excitations, and so they scatter into freespace in the read process

as well. We now have a device which randomly (and infrequently) generates “write”

photons scattered into the cavity detection mode, and then immediately generates

corresponding “read” photons into the same spatial mode.

As mentioned previously, this process also works in freespace[3], but requires many

1In which case we would have to accumulate statistics forever, and would still find our signal
ruined by detector dark counts
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Figure 5.2: Quantum states used for photon pair generation. The ⇡-pump frequency
is chosen so that the write scattering rate is suppressed relative to the readout rate due
to the large detuning from resonance. This allows the source to operate in a regime
of well-separated pairs and large cross correlation. Optical pumping is realized with
a combination of the ⇡ pump and a � polarized beam on the Fg = 4 ! Fe = 4
transition.

more atoms and/or higher densities. As such, e↵ects like backgrounds due to imper-

fect optical pumping and lensing of the read-out photon due to high optical depth

impose limitations on performance which do not impact our cavity-enhanced source

until a much higher quality source is required, as described in chapter (6).
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5.3 The Basic Experiment

A schematic of our experimental apparatus is shown in figure (5.2). A MOT

of approximately 106 Cesium 133 atoms (rms size ⇠ 500µm) is trapped across the

waist of a near-confocal cavity with waist wc = 110µm, and Finesse F = 250. The

cavity length is Lc = 66.18mm, resulting in an FSR �⌫FSR = c
2L

c

= 2265MHz, and a

cavity linewidth 
2⇡ = �⌫

FSR

F = 8.6MHz. These numbers lead to a peak cooperativity

at an anti-node, on the strongest transition (|4, 4i ! |5, 5i) of ⌘peak = 24F
⇡(kw

c

)2 =

3⇥10�3, and hence a maximal single-atom vacuum Rabi frequency of g
2⇡ = 0.36MHz.

Additionally, to increase the detection-path quantum e�ciency we chose to make our

cavity asymmetric, with the mirror on the detection side having ⇡ 33 times more

transmission than the mirror on the locking side. This had the a↵ect of making

photons scattered into the cavity 33 times more likely to leak out on the detection

side rather than the locking side. The round-trip power loss of ⇠ 1.4% limits the

cavity out-coupling e�ciency through the high-transmission mirror to 45%.

Once the quadrupole fields have been turned o↵ and the atoms are polarization

gradient cooled to 10µK, we are left with approximately 104 e↵ective atoms2 within

the waist of the cavity.

We apply a small 1mG bias field along the cavity (ẑ) direction to define a quanti-

zation axis. For 100µs, atoms are optically pumped into |Fg = 3,mF = �3i with

a combination of a ⇡-polarized pump beam on Fg = 3 ! Fe = 20, and a ��-

polarized pump beam on Fg = 4 ! Fe = 40. This pumping scheme has dark states in

2Where the e↵ective atom number is the number of atoms that there would be if all atoms sat
at anti-nodes of the cavity field, along the axis of the cavity.
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|Fg = 4,mF = �4i, |Fg = 3,mF = �3i, and |Fg = 3,mF = 3i. The |Fg = 3,mF = 3i

state is unstable in the sense that, after a few o↵-resonant scattering events to Fg = 4,

the atoms will be driven to mf < 0. The population ratio between the remaining

Fg = 3 and Fg = 4 dark-states is determined by the relative o↵-resonant scattering

rates (and hence beam intensities) and polarization impurities. We adjust these pa-

rameters to ensure that ⇠ 80% of the atoms remain in Fg = 4. This leaves an optical

depth N⌘ ⇡ 1.5 in Fg = 3. Shelving a majority of the atoms in Fg = 4 has the e↵ect

of reducing the average heating rate per atom, allowing us to run the experiment

longer without re-collecting and re-cooling the sample.

We have verified and optimized the quality of the optical pumping by de-pumping

the F = 4 fraction to F = 3 and driving a state-selective microwave transition at

⇠ 9.2GHz between Fg = 3 ! Fg = 4. The number of atoms transferred to Fg = 4 is

then detected via fluorescence on the Fg = 4 ! Fe = 5 cycling transition. A better-

than-average example, shown in figure (5.3), reveals ⇠ 95% of the atomic population

if |Fg = 3,mF = �3i. This high quality optical pumping is made possible, at least in

part, by the low single-pass optical depth of the sample OD1 ⇡ N⌘
F/2⇡ = .3 for N⌘ ⇡ 10.

If the sample substantially absorbs and re-scatters the optical pumping beam it can

become very di�cult to optically pump it without detuning from resonance, which in

itself degrades the quality of the optical pumping due to o↵-resonant scattering from

other levels.

The wonderful thing about this particular setup is that the optical pumping pro-

cess produces the photon pairs. Having pre-pumped the system, we just continue to

run the optical pumping process for an additional 2ms, only now we analyze the light
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Figure 5.3: Optical Pumping Diagnostic with Microwaves. All atoms are depumped
from F=4, and then Zeeman-state selective microwave transitions are driven between
F = 3 and F = 4 ground state hyperfine manifolds at ⇠ 9.2GHz. Any transferred
atoms are detected via fluorescence on theFg = 4 ! Fe = 5 cycling transition. This
sequence is repeated as the microwave detuning is scanned. We observe three peaks,
corresponding to the three allowed transitions from |F = 3,mF = 3i. The lack of
other peaks indicates that there are very few atoms in other states.
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Figure 5.4: Quantum states used for photon pair generation. The ⇡-pump frequency
is chosen so that the write scattering rate is suppressed relative to the readout rate due
to the large detuning from resonance. This allows the source to operate in a regime
of well-separated pairs and large cross correlation. Optical pumping is realized with
a combination of the ⇡ pump on Fg = 3 ! Fe = 20 and a � polarized beam on
Fg = 4 ! Fe = 4.
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scattered into the cavity. The initial state for the pair source is |Fg = 3,mF = �3i,

and the cavity is tuned to the Fg = 3 $ Fe = 20 resonance. Because the atoms

begin in a dark state, they may only leave the state via o↵-resonant scattering3 (o↵

of Fe = 3). The write photons are the result of this slow |3,�3i ! |30,�3i ! |3,�2i

Raman process. A write-photon scattered into the cavity produces a magnon, which

is then immediately, collectively, and resonantly read out via cavity scattering on the

|3,�2i ! |30,�2i ! |3,�3i Raman transition (see figure (5.4)). For the readout to

be collective the “read” beam must counter-propagate relative to the “write” beam.

This is achieved by retro-reflecting the write beam4.

Because the “write” and “read” scattered fields have opposite circular polariza-

tions, we separate them with a quarter wave-plate and a polarizing beam-splitter

(PBS). The output of this PBS is coupled into two single mode fibers, which run to

the single photon counting modules which are connected to a P7888 1ns resolution

multiple-event time digitizer (from Fast Comtec GmbH), as detailed in chapter (4).

A quick check revealed that if the write- and read- pumps are not counter-

propagating, the phase-matching of the process is broken, and the pairs are no-longer

scattered into the cavity. In contrast to the data for the old confocal setup (figure

(5.1)) which contained a narrow peak on a wide pedestal arising from the multi-mode

nature of the emission process[6], with our new non-confocal cavity we observe only

a single, slightly broader peak, without any pedestal to speak of (see figure (5.5)).

One might also worry that the quality of the source might be limited by imperfect

3In fact minimization of the scattering rate into the cavity is precisely the way that we fine-tune
the bias field to lie along the ⇡-pump beam.

4This would have been convenient anyway, as it ensures that the atoms are not pushed out of
the cavity mode by the optical pumping process.
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Figure 5.5: Phase matching between Write and Read pumps for our new, non-confocal
cavity. The observed 1/e2 half angle of � = 2.7mrad, in reasonable agreement with
the cavity TEM00 opening half-angle of 2.5mrad. The lack of a broad pedestal,
in combination with the peak width corresponding to the TEM00 opening angle,
indicates that phase matched emission proceeds into only a single mode of the cavity.
It is slightly surprising that this data is clean, as it was taken for pump-powers
corresponding to above-threshold four-wave mixing, where one might expect abrupt
onset of the laser-like process.
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optical pumping: Because the atoms on |Fg = 3,mF = 2i scatter resonantly, and

those in |Fg = 3,mF = 3i scatter only o↵-resonantly (at detuning �32 = 150MHz),

it might seem that even ✏ ⇡ ( �/2
�

32

)2 ⇡ 3 ⇥ 10�4 imperfection in the optical pumping

would result in as many write photons coming from atoms in mF = 2 as from atoms

in mF = 3. We work at su�ciently high o↵-resonant write scattering rates, however,

that the resonant transition is saturated, resulting in many fewer photons scattered

from imperfectly pumped atoms than might be expected from the näıve low-saturation

calculation.

5.4 gwr(⌧ ) and the Cauchy-Schwarz Inequality

Given that we are claiming to have built a source of photon pairs, it is interesting

to look at the probability of getting a “read” photon at some particular delay ⌧ after a

“write” photon, compared to the unconditioned probability of getting a read photon.

Quantum mechanically, this quantity is given by5:

gwr(⌧) ⌘ h:Iw(t)Ir(t + ⌧):it
hIwit hIrit

(5.1)

5.4.1 Beyond the Classical Limit

One might hope that gwr > 1 indicates that the light is correlated beyond the

classical limit, however this is not the case. Imagine a two classical light beams,

both of which are o↵ for long periods of length Toff = (1 � ✏)Ttot, and then on for

brief periods of length Ton = ✏Ttot, as in figure5.6. One may easily show that for

5We write the expressions in terms of intensities I
x

rather than photon numbers n
x

just to
indicate the classical analog of the measured quantity.



Chapter 5: High Brightness Source of Fourier-Limited Photon Pairs 82

Classically Generated Write- and Read- Photons

ton

T
0 5 10 15 20 25 30

Figure 5.6: The classically controlled laser intensity wave-forms (generated for exam-
ple by AOMs), one shown in orange, and the other in blue, correspond to a cross-
correlation gwr � 1, indicating that gwr > 1 is not proof that light is non-classical.

|⌧ | < Ttot/2 (and repeating with period Ttot):

gwr(⌧) =
1

✏

8

>

<

>

:

1 � |⌧/Ton| if |⌧ | < Ton

0 otherwise
(5.2)

As such, even classical correlation will produce gwr(⌧) > 1. The key point is that

it will also introduce classical fluctuations into each of the two beams separately:

grr, gww > 1. Using the Cauchy-Schwarz inequality[21] we can show that for any real

valued functions of time Iw(t), Ir(t), we must have:

hIw(t)Ir(t)i2
t  hIw(t)i2

t hIr(t)i2
t (5.3)

Quantum mechanically we need only add the normal ordering operators, and we are
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then left with (after a bit of algebra):

G ⌘ gwr(⌧)2

gww(0)grr(0)
 1 (5.4)

For the example given above, gww(0) = grr(0) = 1
✏ , so G = 1, and we see that, as

expected, the classical fluctuations do not violate this inequality.

5.4.2 Extracting gwr(⌧) from the Measurement Record

The aforementioned expressions are idealizations of what one can hope to measure

in practice, in the sense that they describe measurements made with infinite timing

resolution, and ensemble averaging.

In reality, we assume that our system is ergodic and replace ensemble averages

with time averages. It bears mention that the quantum-classical inequalities thus far

derived are valid even when ensemble averages are replaced with time averages.

We handle the finite timing resolution by computing all correlation functions

into time bins whose size is typically denoted T .The 1ns resolution of our detec-

tors/counting card is more than su�cient to observe all dynamics, as we are limited

our atomic excited-state lifetime ��1 ⇡ 30ns, and more importantly our cavity life-

time6 of �1 ⇡ 19ns.

Specifically we have:

g↵�(⌧, T ) =

P

j

n

N↵
j N

�
j+b⌧/T c � �↵��b⌧/T c,0(N↵

j )2
o

P

j N
↵
j

P

j N
�
j

(5.5)

6It might seem that a process which inserted a photon in the cavity, and removed it faster
than �1 would be visible in the field which leaks out of the cavity, but in this continuous-mode
experiment, this is not the case. The reason is that the write photon will be stored in the cavity
for a time period of order �1, which means that the g

wr

will, unavoidably, be smeared out by that
much.
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Here Nµ
i is the number of photons detected by detector µ during time bin7 i and

b⌧/Y c rounds Y down to the nearest (smaller) integer. The second term fulfills the

normal ordering requirement and, as it can be seen, eliminates double-counting issues.

As we have seen, however, the 50ns dead-time of the SPCM’s is far too large for it

to be practical to measure zero-time autocorrelations with a single detector– as such

the second term in equation (5.5) is basically always irrelevant.

5.4.3 Interpretation as a Source of Pairs

A high-quality cross correlation measurement from our apparatus is shown in

figure 5.7. This data was collected at a write photon scattering rate of 0.01/µs

detected, implying 0.2/µs into the cavity, due to detection path e�ciency of q =

0.053(8) 8. From this data it is clear that the readout dynamics require a time of

approximately (50ns) to read out the majority of the excitation, though of course full

readout takes somewhat longer.

We found these first data to be particularly exciting because they show real quan-

tum dynamics9! The agreement with theory is quite good. One can show that in the

absence of backgrounds, the maximum gwr is given by gwr ⇡ T
pair

⌧pair , where Tpair is the

average time between pairs (at the source), and ⌧pair is the width of the bi-photon

wave-packet (⌧pair ⇡ 50ns, typically). For the given rate of write-photon generation,

7As determined from the measurement record stored by the P7888 counting card.

8This e�ciency includes SPCM quantum e�ciency of 0.40, cavity out-coupling of 0.45, fiber
coupling e�ciency of 0.75.

9It is true that these dynamics are the same as those predicted by the Maxwell-Bloch[121] equa-
tions. In other words, even a classical excitation would be read out in this way. As we will see
shortly, however, this data definitely corresponds to a single, quantized excitation being read out.
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Figure 5.7: The cross correlation gwr(⌧) reflects the rate of detecting a read photon at
a time t+⌧ , given that a write photon was detected at time t. This rate is normalized
to the unconditional rate of detecting read photons. The tail at negative time reflects
the fact that the write photon may be stored in cavity for a time �1, resulting in
the read photon detection prior to the write photon detection.

T�1
pair ⇡ .2/µs, we expect gwr ⇡ 100. In this data set we see gwr ⇡ 60, within a factor

of two of the prediction.

We can analyze the data another way, noting that the ratio of the resonant,

collective readout rate to the o↵-resonant write scattering rate ought to set an upper

limit on the observable gwr. The write rate is Rw = N⌘ ⌦2

w

4�2

� b2
w

b2
r

, and the read rate

Rr = N⌘ ⌦2

r

�(1+N⌘)2 , with b2w = 5
7 and b2r = 3

16 the branching ratios for the write and

read processes, respectively, and N⌘ the optical depth for the read process. We can

now estimate gwr = R
r

R
w

= 1
(1+N⌘)2 (

�
�/2)

2 b2
r

b2
rp

b2
w

b2
wp

. For N⌘ = 7, and
b2
rp

b2
wp

= 189
80 is the ratio

of the pump couplings, we find gwr ⇡ 91. In fact the highest gwr we observed in this

experiment (see figure (5.7)) was ⇡ 100, in good agreement with this number. To

achieve a higher gwr we would actually have to reduce the optical depth of the sample!

The high cross-correlation makes it likely that the pairs are in fact non-classical,
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and not a result of classical fluctuations in the system. To be certain we must violate

the Cauchy-Schwarz inequality equation (5.4). To do so we must measure the much

more time consuming auto-correlations. The cross correlation gwr(⌧) is relatively

quick to measure because the write and read photons come in pairs, and so detection

of a write photon indicates a read photon is likely. In contrast the autocorrelation

measures the coincidence rate for two write photons or two read photons. These are

only slightly correlated, as determined either by the thermal motion of the atoms[72]

which yield gww = grr = 1 + e�⌧/⌧
c  2, or classical fluctuations in atom number and

beam intensity. It is for this reason that the autocorrelation SNR’s are substantially

worse than those of the cross correlations.

The auto-correlations and Cauchy-Schwarz inequality violation factor G are plot-

ted in figure (5.8) versus binsize, rather than time o↵set, for improved statistics. It

is clear that as the binsize is increased beyond the size of the bi-photon wavepacket,

the gwr drops, and so the G-factor drops. As it is, the peak value of the G factor, at

T = 60ns, is G = 7602100
320 � 1, indicating a tremendous violation of the inequality.

The enormous error-bars arise from the poor statistics in gww and grr. The method

to properly compute the median value and confidence intervals of the observed quan-

tities in the presence of very few counts is left for appendix (C). For comparison, the

original pulsed source from the Kimble group[91] achieved G = 292(57), while the

Harris group achieved[3] G ⇠ 400.
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Figure 5.8: The cross and auto correlations versus binsize are plotted in green, red
and blue, respectively. The ratio G is plotted in black, with grey confidence interval.
G > 1 is the region of non-classical twin-beam squeezing, and extends beyond 10µs.
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5.4.4 Time-Dynamics of Readout

Included in figure (5.9) is a model curve resulting from time evolution of the three-

level hamiltonian model (3.17). including additionally the e↵ect of the storage of the

write-photon in the cavity mode.

In contrast with the time-separated write-read schemes discussed in chapter (3),

the read bin timing is set by the write photon arrival, and not the turn-on of the read

beam. This is a fundamental di↵erence between continuous and pulsed schemes. The

general way to handle this sort of e↵ect using Quantum Monte Carlo is to consider

the full system dynamics, including write and read cavity modes, both before and

after the write photon has leaked from the cavity and been detected. Because the

read dynamics are entirely una↵ected by the presence of the write photon within the

cavity we must simply interfere all indistinguishable paths that provide write and

read photons separated in time by ⌧ :

P (⌧, r|w) /
�

�

�

�

2



Z

d⌧we
� 

2

⌧
wAr(⌧ + ⌧w)

�

�

�

�

2

(5.6)

Where Ar(⌧) is the time-dependent amplitude for a corresponding read process with

a well-defined start time (as is the case in a pulsed scheme), according to equation

(3.17).

One consequence of this expression is that P (⌧ < 0) is not necessarily zero, mean-

ing that the read photon may arrive before the write photon! Since this expression

embodies the storage of the write photon within the cavity mode, this is not surpris-

ing: there is a non-zero probability that the write photon will be stored so long in

the cavity mode that it comes out after the read photon. This is borne out by the

⌧ < 0 tail in the data.
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Figure 5.9: The cross correlation between write and read scattered fields gwr is plotted
versus delay time ⌧ , including a curve of fit arising from a 3-level dynamical model.
The Rabi-flopping, as well as ⌧ < 0 behavior, are captured by the model.

The convolution may also be understood in Fourier space, in which case it acts

as a spectral filter of the bi-photon wavepacket of width . This has the benefit of

further suppressing the bright state components of the readout, and improving the

spectral purity of the source.

As can be seen from the overlap of the model curve with the data, the three-level

approximation is a very good one. Even the Rabi-flopping of the read photon into

and out of the cavity is evident in the data.

We are generating pairs at a rate of 5 ⇥ 104pairs/s. As will be seen shortly,

the pairs have a spectral width of order ⇠ 1MHz, yielding a spectral brightness of

5 ⇥ 104pairs/(s MHz), which is more than 2 orders of magnitude brighter than the

brightest contemporary SPDC source[64], with a brightness, as mentioned previously

of 3 ⇥ 102pairs/(s MHz).
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5.5 Interpretation as a Single Photon Source

We have just seen that that our source produces read photons which are highly

correlated in time with corresponding write photons. It would be natural to claim

that conditioned upon the detection of a write photon, there ought to be precisely

one read photon emitted, and to think of our system as a heralded source of single

read photons. To determine to what extent this claim is true, we need to ask two

questions:

• What is the mean number of read photons that come out, conditioned upon a

write photon?

• What is the distribution of read photon numbers emitted in the read-field?

Specifically, what is grr|w?

The first question is answered by integrating the readout probability up over time,

with the integral centered near the write photon (on the peak of the cross-correlation).

This integral is plotted, versus integrated bin size, as the inset to figure (5.10). The

linear slope arises from uncorrelated backgrounds, and the o↵set is the “single photon”

readout e�ciency � that we are looking for10. Correcting for detection-path losses,

the recovery e�ciency is � = .57(9). For comparison, the Harris pair source[3] has

an extracted11 single photon retrieval e�ciency of �  0.10.

10Of course thus far we only know that it corresponds to the mean number of photons emitted in
the readout process. g

rr|w will tell us how much of this arises from the single photon component.

11We estimate � ⇡ (gpeak

wr

� 1)(R
s

�T
gwr

), where R
s

is the quoted stokes rate of 180 ⇥ 103/s,
gpeak

wr

= 20, and �T
gwr

= 20ns is the temporal width of the biphoton peak as given in the Harris
paper.
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Figure 5.10: Characterization of the heralded single photon source. grr|w and (inset)
probability of generating a read photon, given the detection of a write photon. Both
data-sets are plotted versus bin size T . The minimum value of grr|w = 0.03(3 ⌧ 1)
indicates a factor of ⇠ 30 suppression of 2 read-photon events compared with the
expectation from the 1 read-photon rate, and hence highly non-classical light. The
large T slope of the retrieval curve indicates the background (uncorrelated) read rate,
while the extrapolated Y-intercept reflects the retrieval e�ciency of Rc = 0.57(9),
referenced to within the cavity.
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To answer the second question, the auto-correlation of the read-beam (versus bin

size, with the bins centered on the peak of gwr(⌧), at ⌧ = 20ns), conditioned upon the

detection of a write photon is plotted in figure (5.10), along with a model arising from

the corresponding gwr. The minimum value of this grr|w, for a bin of size T = 60ns, is

gww|r = 0.03(3), computed using the more accurate methods from appendix (C). In

the absence of any backgrounds other than those from other write-read pairs, grr|w

ought to be given by grr|w ⇡ 2gwwnw ⇡ 0.052(6), which agrees with the measured

value12. Our measurement is thus consistent with nearly all backgrounds arising from

other pairs!

Our 57% retrieval e�ciency requires a nearly 200ns bin, as qualitatively evident

from the timescale over which the recovery curve in figure (5.10) approaches the large

T asymptote. In the interest of comparing apples to apples, we will analyze grr|w

into the same binsize, which yields gww|r(T = 200ns) ⇡ 0.21(6). Combining these

numbers we estimate P0 = 0.34, P1 = 0.57,P2 = 0.04.

One might be tempted to claim that grr|w ⌧ 1 is evidence that the twin-beam

squeezing process generates anti-bunching by suppressing background counts. In fact

the behavior is more accurately understood as the conditional addition of a single

photon with temporal wavepacket short compared to R�1
b , the background rate. This

means that for short times after the write photon, the added single photon dominates

the statistics of the light, and we observe grr|w ⌧ 1. For longer times the (Poissonian

distributed) backgrounds begin to overwhelm the single photon count, and grr|w rises

towards unity.

12If, as before, we take g
ww

= 2, as per [72].
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(b)

Figure 5.11: Estimate of photon linewidth from the FFT of cross correlation. In
the limit that the photon pairs are Fourier limited, the biphoton linewidth may be
estimated from the fourier transform of the square root of the cross correlation func-
tion. (a)A characteristic cross-correlation gwr(⌧) data-set, and Fourier transform
F(�){

p

gwr(⌧) � 1} (b). The fourier transform indicates a linewidth of ⇡ 2MHz.

5.6 Bi-Photon Linewidth

For QIP applications it is very important to know how spectrally broad the pho-

tons are. There is a lower limit set by time-frequency uncertainty: Taking the Fourier

transform of
p

gwr(⌧) � 1, and squaring it, as shown in figure (5.11), gives an estimate

of this limit as ⇡ 2MHz.

Actual measurement of the write- or read- photon bandwidths is more involved.

The idea is to beat the scattered write- or read- photons with a picked-o↵ portion of

the pump-beam, and look at the spectral properties of the resulting beat-note. We

frequency shift the pump-beam with a fixed frequency AOM before beating to move

the signal out of any possible 1/f backgrounds. This detection technique technically

measures the mutual linewidth of the scattered field and the pump beam. So long as
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the pump beam is well-stabilized in an absolute sense, we may interpret beat-note as

a measurement of the absolute linewidth of the photons.

5.6.1 Heterodyne Detection

One might hope to measure the linewidth via a simple heterodyne setup with a

standard avalanche photodiode (see figure (5.12a)). The problem with this approach

is that in order to have a signal which is larger than the technical (Johnson) noise

of the photodiode we will need the strong beam to be shot-noise limited, requiring

at least nanowatts of strong-beam power (onto an Avalanche photodiode), to be

compared with ⇠ 700attowatts (⇠ 20KHz detected rate) of signal power! The result

is that we are completely buried in the technical intensity noise of the strong beam. It

is really amazing how many sources of noise there are in the lab when you are looking

for such a small signal. We attempted to chop between background subtraction and

signal measurement on a few second timescale, but even this only won us an order of

magnitude, leaving us far from being able to see our signal of interest.

5.6.2 Balanced Heterodyne Detection

An alternate approach is the so-called “balanced heterodyne detection” method[108],

shown in figure (5.12b). It is a heterodyne technique to suppress the technical noise

of a strong beam by measuring the di↵erence signal between beat-notes measured on

the two output ports of a beamsplitter. The intensity noise of the strong beam has

the same phase on both detectors, while the beat-signal has opposite phase owing

to the ⇡
2 phase di↵erence between transmission and reflection. This method requires
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Figure 5.12: Heterodyne Spectroscopy. The spectral bandwidth of an optical signal is
determined by measuring the electrical spectrum of its beat-note with a strong beam,
as measured on a photodiode. The strong beam is frequency shifted to move the signal
away from the 1/f noise of the detector. (a)Heterodyne spectroscopy performed with
a single detector requires a lot of power in the strong beam to ensure that the beat
signal is not buried in the detector Johnson noise. This leaves the system highly
sensitive to classical intensity noise of the strong beam. (b) Balanced heterodyne
spectroscopy may be performed by taking the di↵erence between the two detectors,
and hence canceling out the strong beam technical intensity noise while enhancing
the beat signal. (c) Single Photon heterodyne spectroscopy is performed by replacing
the two detectors with two SPCMs, whose technical noise (dark counts) is quite low,
permitting much lower strong-beam intensities (on the order of the intensity of the
signal beam), and hence much less sensitivity to laser technical intensity noise.
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very sensitive balancing of the gains and phases of the two paths in order to achieve

good suppression of technical noise at the frequency of interest.

5.6.3 SPCM-based Heterodyne Detection

It seems likely that the balanced heterodyne approach would have worked quite

well, but we chose an alternate approach. By detecting the beat-signal on both output

ports of the combining beam splitter with SPCMs, we were able to have detection

noise of order 500counts/second, as determined by the SPCM dark count rates. Be-

cause the detector noise was low, we did not need to compete with it to generate the

beat-note, so the so-called “strong” pump-beam could be comparable in intensity to

the signal beam. By going to higher intensities there was a factor of 2 in SNR to be

won, but saturation of the SPCM’s and data analysis time were enough reason not

to go to higher intensities.

The SPCM-based Heterodyne Detection setup is shown in figure (5.12c). One

may show that the cross correlation function between the two detectors gAB(⌧) has a

term which varies at the o↵set frequency between the two beams, and is proportional

to Esig(t)E⇤
sig(t + ⌧) / g1(⌧), which is the fourier transform of the spectrum of the

light. As such the procedure is to compute the cross-correlation between the photon

detection records of the two SPCM’s and fourier transform it to arrive at a power

spectrum. The data are shown in figure (5.13), and indicate write and read photons

each with a fitted bandwidth of 1.1(2)MHz, o↵set from one another by approximately

1MHz. This o↵set likely arises from a combination of di↵erential Zeeman- and Stark-

shifts of the relevant ground states (|3,�3i and |3,�2i), We have now satisfied one
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Figure 5.13: Measured spectra of write- and read- scattered fields. Each field is
(separately) beat against a frequency o↵set pump field, and detected on a pair of
SPCMs in a Hanbury-Brown Twiss[62] setup. This square root of the power spectrum

of the cross correlation between the two detectors
q

|F(�){gwr(⌧)}|2 reflects the
frequency spectrum of the beat-note, and hence the frequency spectrum of the optical
field (assuming that the pump beam is stable)

of the primary goals we set out to accomplish: a source of single photons or pairs

which is su�ciently spectrally narrow to interact resonantly with the Cs atomic line

of linewidth � = 2⇡ ⇥ 5MHz.

One might wonder why it is preferable to use two SPCM’s rather than computing

the autocorrelation of one SPCM. For photons with a linewidth of 1MHz, the oscilla-

tions of the auto- or cross- correlation decay with a 1/e time of ⇠ 160ns. It is clearly

unwise to discard 50 of those nanoseconds because of detector dead-time. It does bear

mention that the particular configuration shown here isn’t quite a Hanbury-Brown



Chapter 5: High Brightness Source of Fourier-Limited Photon Pairs 98

Twiss setup, as there is a signal coming in on what ought to be a dark part of the

cube. One could in principle use a second cube, after the combining cube, to split the

signal to the two detectors. This would have the e↵ect of inverting the oscillations

in the cross-correlations and decreasing the signal to noise, but would otherwise not

a↵ect the outcome.

5.7 Photon Indistinguishability and the Hong-Ou-

Mandel Dip

The heterodyne measurement from the previous section revealed that the write-

and read- photons have similar spectral properties, in spite of a small frequency o↵set.

Had this measurement been taken for long enough to acquire very good statistics it

would provide very clear information about how close to identical the write- and read-

photons are. Here we present an alternate approach which probes distinguishability

more directly.

The Hong-Ou-Mandel dip[54] is a well known phenomenon that occurs when two

otherwise indistinguishable photons impinge simultaneously on the two input ports

of a beam splitter (see figure (5.14)). One can easily show that in this situation both

of the photons will leave through either one output port of the beam splitter, or the

other, but that they will never leave via di↵erent ports. We now derive this e↵ect in

the single-mode approximation.
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-OR-

The Hong-Ou-Mandel Dip

Figure 5.14: A Schematic of the Hong-Ou-Mandel e↵ect. Identical photons are si-
multaneously incident on the two ports of a non-polarizing beam-splitter, and both
photons will emerge from one port or the other– due to a quantum interference e↵ect
at the beamsplitter the photons never go in opposite directions.

5.7.1 HOM Dip: Single Mode Approximation

If a† and b† create photons in the input modes, then the initial state of the field

is:

| i = a†b† |⌦i (5.7)

That is, there are photons in each of the two input modes. Here |⌦i is the vacuum

state. Using the beamsplitter relations for a 50 : 50 beamsplitter, equation (3.27),

whose output modes are c† and d† reveals that | i may be written as:

| i =
1p
2
(c† + d†)

1p
2
(c† � d†) |⌦i =

1

2
(c†2 � d†2

) |⌦i (5.8)

Which is says that either both photons leave through one port of the beam splitter, or

both leave through the other port, but there is no situation in which the two photons

leave through opposite ports!
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5.7.2 HOM Dip: Continuous Mode Limit

Where does this derivation go wrong if the two photons are distinguishable? The

answer is that if a† and b† create photons of di↵erent frequencies then we should really

add a frequency subscript to each creation operator, and then when we apply the

beam-splitter relations we will see that the terms with di↵erent frequencies commute

through one another:

| i = a†
⌫1b

†
⌫2 =

1p
2
(c†

⌫1 + d†
⌫1)

1p
2
(c†

⌫2 � d†
⌫2) |⌦i

=
1

2
[(c†

⌫1c
†
⌫2 � d†

⌫1d
†
⌫2) + (d†

⌫1c
†
⌫2 � c†

⌫1d
†
⌫2)] |⌦i (5.9)

The interesting point is that when ⌫1 = ⌫2, the second pair of parenthesized terms

vanishes! This is the heart of the Hong-Ou-Mandel e↵ect: There are two di↵erent ways

that we may end up with a photon in the c† arm and a photon in the d† arm, and they

destructively interfere (due to phase accrued on reflection, compared to transmission)

when the photons in the two input arms a† and b† are indistinguishable!

Now suppose that we analyze the HOM-dip for a pair-source like ours. Let us

consider a bi-photon wave-packet with mean arrival time T created by the operator13:

↵† =

Z 1

�1
d⌧A(⌧)a†

T+⌧/2b
†
T�⌧/2 (5.10)

Now consider the interference of these photons on a 50:50 beamsplitter. Applying

the standard beamsplitter relations and taking advantage of symmetries yields:

↵† =
1

2

Z 1

0

d⌧
⇣

A(⌧)[c†
T+⌧/2c

†
T�⌧/2�d†

T+⌧/2d
†
T�⌧/2] + [A(⌧)�A(�⌧)] d†

T+⌧/2c
†
T�⌧/2

⌘

(5.11)

13The form given here really needs to be integrated over T , weighted by the pump beam waveform,
to be correct. This form is not ad-hoc– it is the most general bi-photon wave-packet which satisfies
conservation of energy. If you are uncomfortable with time creation operators, replace them with
x = ct creation operators, where x is the displacement along the detection fiber at a fixed time.
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This expression makes the physics clear: Coincidences between the two detectors can

be suppressed by a destructive interference between the Feynman paths corresponding

to the write photon arriving earlier, and the read photon arriving earlier. In other

words– if no distinction can be made between the write and read photon arrivals then

there will be a destructive interference in the cross-correlation even for a finite time

separation. The auto-correlations will be correspondingly increased, such that the

total probability |A(⌧)|2 + |A(�⌧)|2 is conserved.

To relate A(⌧) to measurable quantities, it is a simple matter of considering the

cross-correlation between the write- and read- paths without interference on a beam-

splitter, and we see that gwr(⌧) / |A(⌧)|2. After the interfering beamsplitter we

expect gCD(⌧) /
�

�

�

A(⌧)�A(�⌧)
2

�

�

�

. Assuming that the phase of A(⌧) arises primarily from

a frequency di↵erence � between write and read photons, we may then posit that:

gCD(⌧) =
1

4

�

�

�

p

gwr(⌧)e
I�⌧ �

p

gwr(�⌧)e�I�⌧
�

�

�

2

=
1

4

⇣

gwr(⌧) + gwr(�⌧) � 2 cos 2�⌧
p

gwr(⌧)gwr(�⌧)
⌘

(5.12)

Agreement of the observed HOM cross-correlation gCD(⌧) with this functional

form would be a strong indication that any distinguishability of the two photons

arises only from a fixed frequency di↵erent between them, and temporal asymmetry

of the bi-photon wavepacket.

In our actual experiment, the HOM dip was most conveniently observed by an-

alyzing the photons in the H/V basis instead of the �+/�� basis. This change is

a↵ected by rotating the analysis QWP by 45�. Upon passage through the analysis

QWP, the �+ polarized write photon is transformed into a 45� linearly polarized pho-
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Figure 5.15: A characteristic cross-correlation data set (a), and corresponding Hong-
Ou-Mandel interference of the photons (b), measured by rotating a waveplate such
that the “write” and “read” photons interfere on a PBS.

ton, and the �� polarized read photon is transformed into a �45� linearly polarized

photon. The beam splitter relations transforming the +/ � 45� linear polarizations

of a single port of a PBS into the two output ports of the PBS are identical to the

relations transforming the two (identically polarized) input ports of a non-polarizing

beamsplitter to the two output ports. Thus we see that a change of basis is all that

is necessary to change our apparatus from measuring gwr(⌧) to measuring gCD(⌧).

The observed cross-correlations, along with predictions coming from equation

(5.12) are shown in figure (5.15). For the HOM prediction to fit the data, we need a

frequency di↵erence � = 3MHz, in contrast to the 1MHz frequency di↵erence mea-

sured by heterodyne spectroscopy. This discrepancy may well come from slightly

di↵erent experimental parameters for the two measurements. Other than the fre-

quency di↵erence, the remaining coincidences arise from the asymmetry of gwr(⌧)

with respect to ⌧ = 0. That is to say that if two two photons come separated in time
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by more than the cavity write-photon storage time of �1 = 19ns, it is fairly clear

which photon is the read photon and which is the write photon- the earlier one is the

write, and the later the read. As such the indistinguishability, and hence the HOM

suppression, are destroyed.

Given that the mean delay between write- and read- photons is of order ⇠ 20ns

(as is clear from figure (5.15), a fiber delay line of ⇠ 4m length in the write path,

before an appropriate non-polarizing beam-splitter, would be make the wave-packet

overlap as good as it could be, given the frequency di↵erence. We did not try this

for technical reasons: One then becomes sensitive to polarization drifts in the fibers,

and beamsplitter losses, among other things.

The waterfall plot shown in figure (5.16) shows the continuous variation of cross-

and -auto correlations as the detection QWP is rotated. This data shows the transi-

tion from weak write-write correlations when the write- and read- photons are polar-

ization separated, to strong write-write bunching when the write- and read- photons

are interfered. It is clear, also, that there is some pollution of the gww and grr data,

arising from imperfect polarizer alignment, and hence HOM e↵ect. This may have

contributed to the larger-than-expected cross gww,rr(⌧ = 0) in the Cauchy-Schwarz

inequality data.

For data collected at higher pump power (see figure 5.17), and hence faster read-

out, the wavepacket becomes more symmetric about ⌧ = 0, and we have observed

suppression of the coincidence rate below the fully distinguishable (classical) limit of

1
2 by as much as 90% into a 5µs bin. We refer to this as 90% indistinguishability.
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Figure 5.16: (b)Cross- and (a,c)Auto- correlations of the “write” and “read” detec-
tion paths, versus the angle of the �/4 plate before the PBS. Rotation of this plate
permits us to change continuously from a Write-Read configuration to a Hong-Ou-
Mandel dip configuration. At wave plate settings where cross-correlation between
the “write” and “read” paths is small, the autocorrelations of both paths are large,
indicating that the photons do, indeed choose to leave the PBS in the same direction.
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Figure 5.17: Cross correlation in polarization separating- and Hong-Ou-Mandel dip-
configurations, demonstrating extremely good suppression of coincidences in the
Hong-Ou-Mandel dip configuration. This results from the fast readout of the read-
photon, and hence good symmetry of the gwr(⌧) about ⌧ = 0.

5.8 Conclusion and Outlook

This experiment was beautiful owing both to its clean results and for its relative

simplicity. The same retro-reflected laser acts as write, read, and optical pumping

beams! This simplicity, however, was also a curse, in that it reduced our ability to

vary parameters. We would have liked to operate at lower write rate to observe a

higher gwr, but turning down the pump strength impacted both the read rate, as well

as the quality of the optical pumping14. As just discussed, turning up the read rate

was helpful for observing a better Hong-Ou-Mandel dip, but doing so also increased

the write rate, and so decreased gwr. Some degree of control was available in adjusting

the total atom number, but even this changed a number of things at the same time

(write rate, number of imperfectly pumped atoms, and readout cooperativity). It

became clear to us that from here, the most sensible thing to do was to go to a

14The more fiendish e↵ect is that when the pump beam intensity is reduced the impact of im-
perfectly pumped atoms increases: The atoms in m

F

= 3 scatter less, while those in m
F

= 2 are
saturated and continue to scatter at the same rate.
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more sophisticated system where atom number, optical pumping quality, and write

and read rates could be independently tuned, which led us naturally to our next

experiment.



Chapter 6

High E�ciency Single Photon

Source

High quality single photons are important for linear optics quantum computing[63],

quantum networking[34], and beyond. There are a large variety of single-emitter sys-

tems available which can provide highly non-classical light with g2 ⌧ 1. However,

achieving high collection e�ciency, and strong, reversible coupling for narrowband

photons has proven quite di�cult, and for many applications it is necessary to achieve

all at once.

E↵ective collection solid angle may be enhanced by way of an optical resonator.

This technology has been demonstrated for Rydberg atoms[76], quantum dots[38],

trapped ions[59], and single neutral atoms[66, 82]. In particular, McKeever et al. have

successfully demonstrated strong coupling between a single atom and a single photon

within a high-finesse cavity- this work required sensitive and di�cult stabilization of

an optical resonator to better than �
4⇥105

, as well as localization of the trapped atom

107
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to an antinode of the cavity field.

The natural question, then, is how strongly one can couple a collective excitation

to an optical cavity. The average nature of the collective coupling means that atoms

need not be so carefully localized, and the collective enhancement relaxes finesse

requirements compared to single-atom systems. Contemporary free-space collective

excitation experiments[20, 36, 15, 3] exhibit single photon retrieval e�ciencies at or

below 50%. Even feedback techniques, which enhance the unconditional retrieval

e�ciency[40, 17], cannot enhance this e�ciency beyond the conditional retrieval e�-

ciency. Given the relatively high readout e�ciency of our pair source, we now turn

to the question of what precisely limited that e�ciency, and how high we can hope

to push it with proper engineering.

We will discover that by using appropriately large beams nearly co-propagating

with the cavity axis, carefully chosen strong transitions, and high-quality optical

pumping, we can realize a source of single photons with grr|w ⌧ 1, and near-unity

retrieval e�ciency. The small angle between the resonator mode and the pump beams

will permit us to observe magnons with long (23µs) and short (230ns) lifetimes, cor-

responding to long- and short- wavelength spin-waves. This lifetime measurement,

in combination with studies of the read-pump frequency and sample-location depen-

dence of magnon readout e�ciency will reveal the details of the spatial structure of

the stored magnon.

Many of the things that we have learned, as well as the details of the high-e�ciency

single photon source that we built, are described in the publication[114]:

• J. Simon, H. Tanji, J. K. Thompson, and V. Vuletic, “Interfacing Collective
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Atomic Excitations and Single Photons” Phys. Rev. Lett. 98,183601 (2007)

6.1 Overview

The work discussed thus far has treated collective excitations in one of two ways.

The first is very qualitative, considering the collective scattering as arising from con-

structive interference of the wavelets generated by phased up dipole radiators. The

second is very formal and idealized, focusing on strongly coupled manifolds of highly

symmetric many-atom Hamiltonians. The reality is much messier. Among the com-

plications investigated experimentally and theoretically are:

• Doppler Decoherence: Between the write-in and the read-out, the atoms move

around both due to recoil from the write-scattering, and due to their non-zero

temperature.

• MOT Location Dependence: The excitation is read out into a di↵erent longi-

tudinal mode of the cavity than it was written into, having di↵erent spatial

structure.

• Inhomogeneous Couplings: The di↵erent atoms experience di↵erent coupling

coe�cients to the cavity modes and pump beams, owing to the finite spatial

extent of the atomic sample, pump beams, and cavity modes.

• Lensing: The cavity has higher order transverse modes to which the collective

excitation may attempt to couple.
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We will discover in studying these issues that in fact they are all necessary to

obtaining a fundamental understanding of what a collective excitation is, and how it

behaves. Proper control of these e↵ects is crucial for reaching high retrieval e�cien-

cies. In the process of learning to build a better source of single photons, we will also

demystify the magic behind collective excitations in cavity QED.

Most of the complexity described above may be categorized as inhomogeneity

of one type or another. We will address each of the preceding e↵ects from two

distinct angles. The first is a qualitative approach, wherein we understand the e↵ect

of inhomogeneity as restoring which-path information (and the corresponding failure

of the quantum eraser), leading to suppression of collective enhancement. The second

approach employs many-body quantum mechanics to actually compute the impacts of

the various types of inhomogeneity dynamically. The former approach will typically

give us the scaling of the behavior, while the latter will provide us with more precise

numbers to which we can compare our data.

Finally, we will briefly address the purely technical concerns of the impact of

imperfections in optical pumping, beam polarizations, and field alignments. Choice

of atomic transitions for the write-in and read-out schemes determine how sensitive

we are to each of these imperfections.

6.2 Experimental Setup

We came to realize that in order to investigate the behavior of our system more

carefully, it would be most convenient to switch to a pulsed, hyperfine-storage, scheme.

By “pulsed scheme” we mean that rather than running continuously, the “write” and



Chapter 6: High E�ciency Single Photon Source 111

“read” lasers are pulsed on and o↵, one after the other. A scheme of this sort has the

advantage the write- and read- pulses may have their power, frequency, and timing

separately controlled. This will permit us to measure memory coherence time, as

well as the frequency dependence of the write-in and readout processes. Addition-

ally, a pulsed scheme allows for a temporally distinct optical pumping period which

may also be independently controlled, hopefully permitting even higher quality op-

tical pumping of the atomic sample. By using a scheme in which the write-in and

read-out processes both change hyperfine ground-states, backgrounds due to imper-

fect optical pumping may be suppressed, as hyperfine pumping is much easier than

Zeeman pumping. Zeeman pumping nonetheless remains crucial for the experiment,

for reasons that will be discussed below.

The experimental setup is shown in figure (6.1). We begin with a MOT, turn o↵

the quadrupole fields, and apply PGC, is described in chapter (4). We then apply

a 1.8 G bias field perpendicular to the resonator axis, and transfer the atoms into

the internal state |Gi = |F = 3,mF = 3i via dark-state optical pumping along the

~B-field, employing a �+ polarized beam on Fg = 3 ! Fe = 30 and the (e↵ectively

unpolarized) MOT beam on Fg = 4 ! Fe = 40. The beam on Fg = 4 ! Fe = 4 must

be unpolarized to ensure that all atoms in Fg = 4 are depumped to Fg = 3.

The write and read beams come from separate lasers, each frequency stabilized

relative to the reference through a frequency o↵set lock. Both have a waist wp =

300µm, propagate at a small angle ✓ = 2� relative to the resonator axis (see figure

(6.2)), and are linearly polarized along the bias field (ie ⇡-polarized). The write

pump, at a typical intensity of 70mW/cm2, is applied for 60ns with a detuning of
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Figure 6.1: Schematic of the setup used for this experiment. The counter-propagating
write- and read- beams propagate at a small angle of ⇠ 2� degrees relative to the
cavity axis to allow for a short-wavelength, long-lifetime component of the magnon.
The small B-field, perpendicular to the write- and read- pump beam propagation
directions, defines a quantization axis for optical pumping.
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Read

Write

Cavity Axis

Figure 6.2: Photograph of the apparatus used for the experiment. The beam paths
of the write- and read- beams are highlighted. These beams utilize the small-angle
mirrors to propagate nearly along the cavity axis, at an actual angle of ⇠ 2�.
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�w = 2⇡ ⇥ �40MHz from the state |Ewi = |Fe = 4,mF = 3i. With some small

probability, a “write” photon is scattered into the resonator, by spontaneous Raman

scattering on the |Gi ! |Ewi ! |F i transition to which the resonator is tuned

(here |F i = |F = 4,mF = 3i). Detection of this “write” scattering event heralds the

creation of a magnon, which may be super-radiantly read out into the resonator at

a later time, via the application of a counter-propagating read pump beam on the

|F i ! |Eri ! |Gi transition (|Eri = |Fe = 3,mF = 3i). The read pump is turned

on in 100ns, with a maximum intensity of 7W/cm2, with a detuning of �r = 60MHz

relative to the |F i ! |Eri transition (see figure (6.3)). This detuning is chosen such

that the scattered read photon may be emitted into another longitudinal mode of

the resonator, four free-spectral ranges of away1. The write, read, optical-pumping

process is repeated 800 times per MOT cycle of 100ms.

For this experiment we use between 103 and 106 atoms within the optical resonator,

corresponding to a variable read-process optical depth ranging from N⌘ = 0.1 to

N⌘ = 200. Here ⌘ = 24F
⇡k2w2

c

⇥ c2
r is the peak single-atom cooperativity, corrected for

the reduced dipole matrix element (coupling coe�cient) of the read-out process.

The resonator used for this experiment is the very same one as used in the pair-

source, except that in the intervening year the mirrors became coated with Cs. The

resonator is 6.6cm long, with a TEM00 waist wc = 110µm, finesse F = 93(2), and

line-width  = 2⇡ ⇥ 24.4(5)MHz. The mirror transmission M1 and M2, and round-

trip cavity loss L for � ⇡ 842nm, are M1 = 1.18(2)%, M2 = 0.039(2)%, and L =

1Given the detuning and power of the read beam, the e↵ective saturation parameter of the read
beam is p = I

r
/Is

1+(�r
la/

�
2 )2

= 23 � 1 This indicates that while the read-process takes place o↵-resonance,

it is power-broadened onto resonance.
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Figure 6.3: Schematic of the setup used for this experiment. The counter-propagating
write- and read- beams propagate at a small angle of ⇠ 2� degrees relative to the
cavity axis to allow for a short-wavelength, long-lifetime component of the magnon.
The small B-field, perpendicular to the write- and read- pump beam propagation
directions, defines a quantization axis for optical pumping.
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5.5(1)%, such that the photon leaves the resonator through M1, towards the detection

optics with a probability T = M
1

M
1

+M
2

+L ⇡ 0.175(4). The light leaving the cavity is

polarization filtered, and the component which was ⇡-polarized within the cavity is

sent by way of a single-mode fiber to an SPCM. The total probability of detecting

a photon emitted into the cavity is q = Tq1q2q3 = 2.7(3)%, which accounts for the

SPCM quantum e�ciency q1 = 0.40(4), interference filter transmission2 q2 = 0.609(2),

and fiber coupling and other path-losses q3 = 0.65(4).

6.3 Retrieval E�ciency

Before we can properly analyze the dependence of “Source Quality” on system

parameters, it is very important to determine what quantity it is that we are interested

in optimizing. In our group’s earlier work[6], we chose to measure the unconditional

retrieval e�ciency of our source:

Ru ⌘ Pr

Pw
=

hnri
hnwi (6.1)

This expression was known to be valid only under conditions where the signal de-

pended upon phase matching, and hence could reasonably be considered collective.

While we certainly still believe that this is a good indicator of the quality of a single

photon source, measuring the phase matching at every step is quite tedious and time

consuming.

If one is truly interested in using a single photon source for quantum optical ap-

plications, the sensible thing to do is measure measure Pread|write in conjunction with

2We have since acquired filters with transmissions upwards of 80%, from Chroma Technologies.
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grr|w, and from there extract how much of the 1-photon probability is coming from

the single-photon source, and how much from backgrounds. The 3-fold coincidences

necessary to measure grr|w take hours to observe. We will eventually make this mea-

surement in order to fully quantify our final device, but we do not want to do so for

every datapoint as we optimize.

What we finally settled upon was a quantity that we call the conditional recovery

e�ciency:

Rc ⌘ Pread|write � Pread =
hnrnwi
hnwi � hnri = hnri (gwr � 1) (6.2)

The idea here is that Pread|write measures the probability of observing a read-

photon, conditioned upon a write photon, but is still susceptible to backgrounds, and

so we must subtract o↵ our best estimate of those backgrounds- the unconditional

probability of a read photon.

nr and nw are measured by defining “write” and “read” bins for each trial, and

within these bins determining how many write (nw) and read (nr) photons were de-

tected. By correlating the writes with the reads, as above, we may estimate Pread|write

and hence Rc. Rc must then be corrected for our small detection path e�ciency of

2.6(3)%, as detailed above. While it is certainly true that the measured detection e�-

ciency is itself a fairly important figure of merit, our primary interest is in the physics

of the collective states and their interaction with the cavity, and so it is sensible to

correct for all losses incurred once the photon has been emitted into the cavity. The

unconditional retrieval e�ciency, in contrast, is insensitive to detection path losses,

as these losses are common to the write- and read- photons.

For our final source, we made detailed measurements of both Rc and Ru, versus
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Figure 6.4: Two measures of recovery, conditional Rc and unconditional Ru versus
write photon number referenced to within the cavity, nw. The rise in Ru at low nw is a
result of read backgrounds. The rise in Rc at large nw is a result of double-excitation.
The large nw value of Ru and the y-intercept of the asymptotic behavior of Rc both
reflect the physical single magnon retrieval e�ciency � ⇡ 0.85.

write photon number. These data are shown in figure (6.4), along with model curves.

The fact that neither curve is actually flat indicates that neither Rc nor Ru is, by

itself, probably a very good estimate of the retrieval e�ciency. In the case of the

unconditional retrieval e�ciency Ru, this turns out to be because of improper ac-

counting for read- backgrounds. In the conditional case Rc, it is because of improper

accounting for write- backgrounds and write- autocorrelations.

At low write photon numbers, the read backgrounds increase Ru above the physical

recovery because the write rate continues to drop, while the read rate bottoms out at

the background rate. If the write backgrounds were bigger than the read backgrounds,

we could never reach this regime. In our case bw = 0.0028(4) and br = 0.0074(9) are

the independently measured write and read backgrounds, referenced to within the
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cavity and arising from detector dark counts and read-pump scattering, respectively.

To fix Ru, we simply include an uncorrelated read background term br, and hence3:

Ru =
� hnwi + br

hnwi (6.3)

Where �, the single-magnon retrieval e�ciency, is the quantity that we are most

interested in extracting.

The problems with Rc are a bit more involved. The first problem is that once nw

is decreased to ⇠ bw, less and less frequently is an actual magnon written into the

system when a “write” photon is detected, so the observed retrieval e�ciency drops.

This may be corrected for by simply scaling Rc up by n
w

n
w

�b
w

. The more complicated

concern is that there is actually some correlation between write- scattering events

gww > 1, indicating that when the atoms scatter a photon, generating a magnon,

the probability of scattering another photon, and hence generating another magnon,

which may be read out with e�ciency �, is enhanced. This leads to a conditional

read background that scales with magnon number mw = nw � bw. Our final model

for Rc is thus:

Rc =
mw

nw
� [1 + (gww � 1)mw] (6.4)

Additionally, we measured that 17(4)% (referenced to within the cavity) of the write-

read coincidences arise from detector after-pulsing[81]. This problem arises for two

reasons: 1)Write- and read- photons have the same polarization, and hence go to

the same detector, and 2)The poor detection path quantum e�ciency means that

3One might wonder why it is unnecessary to include the write backgrounds in the model. This
model actually has nowhere to put them! Mathematically this is because the denominator is P

w

, the
probability of a write photon scattered into the cavity, and not m

w

, the probability of generating
a magnon. Physically it is because once n

w

< b
w

, the x-coordinates of all of the data points will
bunch up.
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we are sensitive to even the relatively modest 0.4% actual after-pulsing probability.

For conditional autocorrelation measurements we use multiple detectors to avoid this

problem.

It is clear from figure (6.4) that this model agrees well with observation. The

retrieval e�ciency � extracted from the conditional data is �c = 0.84(11), in good

agreement with the extracted unconditional retrieval e�ciency is �u = 0.85(2). The

extracted gww = 2.1(2) is in reasonable agreement with the measured gww = 2.4(2).

For all later measurements, we will operate in a regime where nw � bw, so mw ⇡

nw. In this limit we will have Rc ⇡ �(1 + (gww � 1)nw). As such we can estimate the

single magnon retrieval e�ciency from � ⇡ R
c

1+(g
ww

�1)n
w

. We will use this expression as

the benchmark throughout the remainder of this chapter (typically assuming gww = 2

and measuring Rc at a single value of nw), as we analyze the dependence of our source

quality on various decoherence mechanisms and system parameters.

Figure (6.4) also includes a simultaneous fit to the observed cross correlation gwr,

which also agrees quite well. The model curve is:

gwr =
1

1 + c+dn
w

�(n
w

�b)

 

gww +
1 � (gww � 1)b + c+dn

w

�

nw

!

(6.5)

Where gww = 2.1 is the write-write auto-correlation, b = 0.0067 is the measured write

background, and c = 0.003 is the measured read background, and d = 0.27 is the

read background rate which scales with nw.

Above nw = 0.15(3), gwr approaches its fundamental limit of 1/nw. The large

measured values of gwr are a pre-requisite for a heralded source of single photons,

but to be certain we must also measure the conditional auto-correlation function of

the read photons, conditioned upon a write photon. At nw = 0.15(3) we observe
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grr|w = 0.27(21) < 1, indicating that our source is in fact producing single photons.

If the read backgrounds were simply read-photons correlated with undetected write

photons (due to finite detection e�ciency), we would predict grr|w = gwwnw ⇡ 0.3,

which agrees with our measurement to within statistical error.

6.4 Doppler Decoherence

6.4.1 Information Leakage / Qualitative Picture

We have thus far understood the writing process as generating a collective exci-

tation because no information leaks from the system revealing which atom scattered

the write photon and was transferred |Gi ! |Ewi ! |F i. This allows us to write the

state as a superposition state where each atom may be the scatterer, and interfere

the various scattering amplitudes in the read process.

In this context, we have to wonder about the atomic recoil. This recoil manifests

itself in two ways- the first is the Doppler shift of the scattered write photon, and

the second is the extra distance that the atom travels due to the momentum recoil.

Either of these pieces of information could reveal which atom underwent the scattering

process, and destroy the collective state. It is just a matter of how much time we

have before this happens.

The Doppler shift information is obscured by the Fourier broadening due to the

finite length of the write pump beam as long as �kvatomTpulse ⌧ 1. For Cs at 10µK,

with �k ⇠⇡ c
� (set by the angle between absorbed and emitted photons), Tpulse ⌧ 5µs.

The travel distance information is obscured as long as the atom has not travelled an
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added distance greater than extension of its de-Broglie wave-packet �
DB

2⇡ ⌘ ~
p

atom

>

~�
k

m Ttravel. Hence the maximum travel time Ttravel between write in and readout given

by kvatomTtravel = 1, which is the same expression as for the pulse broadening. Thus

we see that the timescale for the Doppler decoherence is given by4 (for �k = c
�

D2

):

⌧Doppler ⇠ (kvatom)�1 =
1

q

2!D2
rec

k
B

T
~

(6.6)

An alternate picture which yields identical results is that the atoms form a phase

grating, and the phase information is washed out once the atoms have travelled a

distance equal to the grating wavelength. This position-space picture provides pre-

cisely the same results as the momentum space picture described in the preceding

paragraphs.

6.4.2 Quantum Dynamics / Quantitative Picture

From the preceding qualitative explanation, it is clear that the Doppler coherence

time scales inversely with the magnitude of the photon recoil. For this reason we chose

a configuration wherein the write- and read- pump k-vectors are nearly collinear with

the cavity axis. As such a photon scattered into the cavity mode heralds the creation

of a magnon with a superposition of long- and short- wavelengths, corresponding to

nearly forward scattering, and nearly back-scattering (see figure (6.5)). Our hope

was that this would yield a recovery curve with two time constants– a short one

corresponding to the large (back scattered) recoil, and a large one corresponding to

the small (forward scattered) recoil. We will calculate now that it does:

4Here we have defined !D2
rec

⌘ ~2
k

2
D2

2mCS
is the kinetic energy that an atom acquires, on average, due

to the spontaneous emission of a Cesium atom from the 6P3/2 level, due to recoil.
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= +

Long- and Short- Wavelength Gratings

Figure 6.5: The state generated by the write scattering process may be written as a
superposition of a long wavelength magnon corresponding to near-forward scattering,
or a short wavelength magnon corresponding to near-back scattering.

Detection of a write photon heralds the preparation of a collective state:

|W i =

r

2

N

X

j

ei
~kpump

w

·~x
j cos(~kcav

w · ~xj)�̂
j
FG |⌦i (6.7)

Where the exponential term comes from the absorption of the write-pump photon,

and the cosine comes from emission into the write-cavity standing wave. This state

is only approximately normalized due to the cavity amplitude modulation, but in the

limit of many randomly located atoms the error becomes negligible. In this analysis

we have ignored the finite transverse spatial extent of the write beam and cavity

mode.

After a storage time t, atom j has moved to the location ~xj + ~vjt. Under the

influence of a readout beam which is tuned to raman resonance with the readout

cavity mode, we may compute the levels which are strongly coupled to the state

|gi ⌘ a†
r |⌦i, where all of the atoms have been returned to their initial state |Gi,

and one photon has been scattered into the cavity. We arrive at the standard 3-level

strong-coupling Hamiltonian, equation (3.17), however the |fi state is now dependent
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upon the states of the atom at time t:

|fti =

r

2

N

X

j

e�i~kpump

r

·(~x
j

+~v
j

t) cos
h

~kcav
r · (~xj + ~vjt)

i

�̂j
FG |⌦i (6.8)

It is crucial to understand that there is no many-atom state with one atom in state

|F i, and all other atoms in |Gi, which is orthogonal to |fi, and has any coupling to

the cavity under the action of the atom-cavity coupling hamiltonian equation (3.15).

As such, the probability that the state |W i may be read out after a time t to produce

a photon, �t, is given by the magnitude squared of its overlap with |Wti, times the

retrieval e�ciency � of the |Wti. Because we expect � to be independent of t, all

time dependence ought to be in the overlap:

�t = � |hft |W i|2 (6.9)

Equation (6.9) will be used to analyze a number of the technical features of our

single photon source. At present we are interested only in decoherence due to atomic

motion, so we choose ~kcav
w = ~kcav

r ⌘ ~kcav, and ~kpump
w = �~kpump

r ⌘ ~kpump,
�

�

�

~kpump
�

�

�

=
�

�

�

~kcav
�

�

�

⌘ k, and ~kpump·~kcav = k2 cos ✓. Computing �t and averaging the final expression

over (uncorrelated) atomic positions and a Maxwell-Boltzmann velocity distribution

at temperature T yields the expression (after a fair bit of algebra):

�t = � e
� t

2

2⌧

2

D cosh2



1

2

t2

2⌧ 2
D

cos ✓

�

= �

2

6

4

e
� 1

2

t

2

⌧

2

D

/ sin

2

✓

2 + e
� 1

2

t

2

⌧

2

D

/ cos

2

✓

2

2

3

7

5

2

(6.10)

Where ⌧�
D1 ⌘

q

8!D2
rec

k
B

T
~ , in agreement, up to a factor of two, with the number we

posited on more qualitative physical grounds in the previous section.
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Figure 6.6: Conditional retrieval e�ciency versus storage time, exhibiting both long-
and short- lifetimes corresponding to long- and short- wavelength spin-waves arising
from forward and backward scattering in the write process.

This functional form shows two time constants– one short ⌧s = ⌧D/ cos ✓
2 , and one

long ⌧l = ⌧D/ sin ✓
2 , corresponding to short and long magnon wavelengths �s = �/ cos ✓

2

and �l = �/ sin ✓
2 respectively.

When we actually measure our retrieval e�ciency as a function of storage time

(see figure 6.6), we do in fact observe two time constants, as predicted by our model.

The shorter one is ⌧s ⇡ 240ns, and the longer ⌧l = 23µs, corresponding to �s ⇡ �/2 =

400nm and �l = �/[2 sin (✓/2)] ⇡ 23µm, respectively, for ✓ ⇡ 2�.

The data and theory appear to agree nicely, and have several interesting features.

Perhaps the most curious is that the retrieval e�ciency falls to 1
4 once the short

wavelength coherence has been destroyed by atomic motion, and not 1
2 as one might

naively expect. This is clearly evident from the second expression in equation (6.10),

but we are looking for a physical reason.
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One may understand the missing factor of two as coming from a phase mismatch

between the running-wave excitation and the standing wave cavity. This picture may

be formalized by treating the forward and back- scattering magnon modes separately

(see figure (6.7)). This results in a 5-state hamiltonian, which may be block diag-

onalized into bright- and dark- hamiltonians, which couple collectively and not at

all, respectively, to the cavity mode. The states which couple to the cavity are the

so-called super-radiant states[30], and are distinguished from the sub-radiant states

(coupled to one another under dark hamiltonian) only by the phase between the

forward- and back- scattering magnon components. Detection of a write photon pre-

pares a super-radiant state. After the short wavelength component has decohered we

are left with a long wavelength magnon, which may be decomposed into a superposi-

tion super- and sub- radiant components with equal amplitudes. The super-radiant

component may then be read out, while the sub-radiant component scatters into

freespace. We now see the whole story: With probability 1
2 the magnon has a long

wavelength and persists, and then with probability 1
2 it may be read out into the

standing wave cavity, for a total of 1
4 .

We have now understood both qualitatively and quantitatively the time-dependence

of the dominant decoherence process acting upon magnons composed of free thermal

atoms. It is clear that if we could constrain the atomic motion to much less than

the magnon wavelength, the storage time could be increased substantially, until it

is limited by something else. Recently, the Kuzmich group has confined Rb atoms

in a 1D optical lattice, and observed just this e↵ect in a nearly forward-scattered

configuration[35]. Similarly, the Bloch group has observed 240ms storage times using
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Figure 6.7: Super- and sub- radiant states in momentum space. The coupling of
long- and short- wavelength gratings to the cavity standing wave may be understood
in terms of super- and sub- radiant manifolds, one of which is strongly coupled to the
cavity, and one of which is uncoupled.

EIT in an atomic Mott insulator in an optical lattice[105].

There remains a bit of confusion arising from the apparent violation of position-

momentum uncertainty in the preceding model. It seems likely that a quantum

mechanical treatment, using the lagrangian L = T � V , instead of H, as in atom

interferometry, would yield an additional factor of two[6], or perhaps just added

complexity. This merits further investigation.

6.5 MOT Location Dependence: Cavity and Pump

Mode-Matching

In the preceding section, we studied the movement of the atoms, between write-

in and read-out, as a time-dependent decoherence mechanism. It turns out that

there is another very simple mechanism which may be understood in much the same

language, arising from the di↵erence in k-vector magnitudes between write-in and
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read-out pump- and cavity- modes.

If the scattering atom absorbs di↵erent amounts of momentum during the write-

and read- processes then after the full write-read process it will not have been returned

to its initial momentum state. If this momentum kick is greater than the momentum

uncertainty arising from the finite sample size, it will be clear which atom underwent

the scattering process, and the collective enhancement of the read process will be

destroyed. This means that �k�1 ⌧ lsample.

Another way to understand these e↵ects is in the context of a Bragg-Reflector. For

a wave-vector mismatch of order �k between the reflector planes and the input beam,

the reflector must have a spatial extent much less than �k�1, or the fields scattered

by di↵erent parts of the reflector will begin to interfere with one another destructively

in the output mode. As such we arrive at the same criterion �k�1 ⌧ lsample.

For a hyperfine changing write-in/read-out scheme, we will have an approximate

frequency di↵erence of 9.2GHz, the Cs ground-state hyperfine splitting. This corre-

sponds to �k�1 ⇡ 3cm. The atomic sample has dimensions of 110 ⇥ 110 ⇥ 500µm3,

determined by the cavity mode waist and MOT radius. All of these dimensions are

much less than �k�1, so we do not expect to have to worry about spatial phase

matching due to k-vector mismatch.

When we include the fact that we are employing a standing-wave cavity, it be-

comes apparent that we are not just dealing with phase-matching, but also ampli-

tude-matching relative to a fixed reference point. More concretely, an atom which

is at an anti-node of the write cavity-mode may well end up at a node of the read

cavity-mode, and hence be unable to scatter a read photon at all!
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All of this physics is embodied in equation (6.9). In this case we take t = 0, and

define ~�k
pump

⌘ ~kpump
r + ~kpump

w , ~�kc ⌘ ~kcav
r + ~kcav

w , with ~�kp · ~�k
cav

= �kpump�kcav cos ✓.

Evaluating equation (6.9) dropping single-atom terms, averaging the atomic locations

over 1D gaussian distributions of RMS size R, with the z-location centered on z0, gives:

�Spatial = �e�R2(�k
p

2+�k
c

2) 1

2

⇥

cos 2�kcz0 + cosh
�

2R2�kc�kp sin ✓
�⇤

(6.11)

In the limit that the sample is much smaller spatially than the k-vector mismatch

(R ⌧ �k�1
c , �k�1

p ), the expression simplifies substantially:

�Spatial = � cos2 �kcz0 (6.12)

This, now, is the equation of interest! As the MOT moves spatially through the cavity

mode, by a distance z0 = ⇡/2
�k

c

, the retrieval e�ciency will go from a maximum, to a

minimum! For our near-resonant hyperfine write-in and read-out schemes, �⌫ = 4 c
2L ,

and �kc = 2⇡ �⌫
c , and so z0 = L

8 ⇡ 8mm, and so we can actually observe this e↵ect

experimentally by moving the MOT around with bias fields.

Our experimental data5 is shown in figure (6.8b), versus MOT (and pump beam)

vertical displacement. To remove systematics arising from beam alignment, what we

actually plot is the ratio of the retrieval e�ciency when the write process takes place

4 FSRs from the read process, to 3 FSRs from the read process (see figure (6.8a). For

this experiment the read is maintained at a fixed detuning from atomic resonance,

while the write beam frequency is hopped by 1 FSR⇡ 2265MHz. In order to maintain

a similar scattering rate for the write process in both cases, we need very high write

intensities for the write-scattering process which is 3 FSRs from the read process, as

5These data were taken several months after the rest, in a slightly di↵erent level configuration
and pump beam orientation, but also in a pulsed write/read/optical-pump scheme.
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Sweet SpotSour Spot

4 FSRs

3 FSRs

A)

B)

Spatial Phase Matching

Figure 6.8: (A) Plot of the cavity field for modes separated by 4 (upper trace) and
3 (lower trace) cavity free spectral ranges. Modes separated by 4 FSR’s overlap well
in the center of the cavity, while those separated by 3 FSR’s overlap well in locations
slightly o↵set from cavity center. (B) Plot of recovery ratio for write-in and read-out
separated by 4 and 3 FSRs, versus position along the cavity axis, with fit curve.
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it is nearly 2 GHz from atomic resonance. The theory curve in the figure thus has

the form (with z0 defined here relative to the center of the cavity, rather than the end

mirror):

�4

�3
=

cos2 cz
0

4⌫
FSR

sin2 cz
0

3⌫
FSR

(6.13)

The only free parameter for the plot is the location of z0 = 0, which in many ways was

the reason to collect these data. When the write-in and read-out are 4 FSR’s apart,

the optimal recovery occurs in the center of the cavity, and so finding this location

is critical. When initially setting up the experiment, one typically estimates by eye,

but by measuring this ratio, one has a consistent, stable way of finding the optimum

which is insensitive to many systematics.

One of the most beautiful things about this experiment is how clean it is. A

few hours spent doing quantum mechanics is worthwhile because the theory typically

matches up beautifully with the experiment!

6.6 Stark Broadening: Inhomogeneous Couplings

Thus far, we have pretended that all atoms couple equally strongly to the pump

beam, and to some extent, the cavity mode as well. Relaxing this constraint is

complicated but very important for obtaining a complete understanding of how super-

radiance works. In this section we will discuss the impact of inhomogeneous couplings

on distinguishability, and then attempt to understand their impact in various limits.

One might be inclined to reason that if di↵erent atoms experience di↵erent cou-

pling strengths, this has the potential to lead to distinguishability in the form of

some atoms reading out faster than others. Distinguishability ruins the constructive
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interference which we depend upon for collective readout of our magnons. Unfor-

tunately, a similarly convincing argument can be made that as long as the write-

and read- beams have the same spatial profile, the fact that an atom reads out more

slowly should be o↵set by its reduced weight in the collective state, and hence indis-

tinguishability should be restored. A more formal analysis will show inhomogeneous

pump coupling is problematic, while inhomogeneous cavity coupling is not. Why

there should be a di↵erence between the pump beams and cavity mode is subtle and

has to do with the structure of the many-atom Hamiltonian.

6.6.1 Terminating versus Non-Terminating Ladders

The issues with inhomogeneous couplings become glaringly obvious as soon as

we attempt to employ the method of chapter (2) to the partially re-diagonalize the

many-atom readout Hamiltonian H in the collective basis. Beginning in the state

|GG...GG, 1i, and repeatedly applying H generates a seemingly non-terminating6

ladder of states! The reason for this is that repeated applications of just the many-

atom read-pump operator does not even generate a terminating ladder.

The read-pump operator is given by:

HRP =
X

j

⌦j
rp�EF + H.C. (6.14)

and repeated application of this operator to the state |W i gives:

H2N
RP |W i =

r

2

N

X

j

�

�⌦j
rp

�

�

2N
⌦j

wpe
i~kpump

w

·~x
j cos(~kcav

w · ~xj)�̂
j
FG |⌦i (6.15)

6Of course it can only generate 2N
atom

orthogonal states.
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where we have also included the (for now irrelevant) spatial dependence of the write

pump beam. The important point is that unless all ⌦rp are equal, the space of states

which is coupled by HRP may be as large as the number of atoms! This coupling

spreads the excitation from the particular collective-state which may scatter into the

cavity into other states which are uncoupled from the cavity, and may only scatter

into free-space. This has the e↵ect of reducing the retrieval e�ciency.

This e↵ect has di↵erent physical interpretations in di↵erent limits. On resonance

the atoms at lower (or zero!) pump couplings begin to act as absorbers during the

read process. O↵ resonance the di↵erent light shifts experienced by the di↵erent

atoms results in a slow rotation of the state away from the maximally super-radiant

one, during the read-process.

This should be contrasted with the influence of the read-cavity coupling Hamil-

tonian HRC , upon the cavity state |ci = a†
r |⌦i. The read-cavity coupling operator is

given by7:

HRC =
X

j

gjr�
j
EGa + H.C. (6.16)

Repeated application of this operator to the state |ci yields one of two states:

H2N
RC |ci / |ci

H2N+1
RC |ci /

X

j

gjr�
j
EG |⌦i ⌘ |ei (6.17)

This behavior is distinctly di↵erent! In spite of the inhomogeneity of the coupling of

the various atoms to the cavity mode, the manifold of coupled states terminates at

7Notice that, as always, we are ignoring higher-order transverse modes of the cavity- in the non-
confocal case they are non-degenerate, so any imperfect orthogonality is suppressed substantially.
For more details read the section on lensing!
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two states: |ci, with one photon in the cavity and all of the atoms returned to their

initial state, and |ei, where that photon has been collectively absorbed by the atomic

sample. As such the inhomogeneity does not adversely e↵ect the recovery, except to

slightly adjust the e↵ective optical depth N⌘.

If we had analyzed the write process rather than the read process, we would have

found that the pump coupling, and not the cavity coupling, is the one whose inhomo-

geneities do not complicate things. This is because it is not an intrinsic property of

the pump or cavity mode which determines the impact of inhomogeneities, but rather

the dimensions of the manifolds under consideration! Inhomogeneous couplings have

a simple e↵ect upon the dynamics if one of the manifolds of interest has dimension

1 (contains only a single state state). In the read-out process this manifold is the

one containing only the state |ci. The excited state (E), and intermediate state (F )

manifolds each contain Natoms states, corresponding to each of the atoms being ex-

cited. It bears mention that because the write process takes place entirely in the

weak-coupling limit, we are not so concerned about these inhomogeneous coupling

e↵ects.

What we have learned, then, is that during the read-process, the inhomogeneous

couplings of the atoms to the cavity mode do not limit the retrieval, while inhomo-

geneous couplings to the pump beams do.

6.6.2 Experiment and Analysis

In light of the fact that read-cavity inhomogeneity does not adversely impact the

retrieval e�ciency, one route (and the one that we took), is to align the pump-beams
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Cavity Mode

Pump Beam

B)

Figure 6.9: (A) In our current configuration, the cavity mode selects out atoms well
within the waist of the pump beam. (B) In the configuration we typically use, the
atoms in the wings of the pump beam participate in the readout process, reducing
its e�ciency.

to be nearly co-propagating with, and somewhat larger than, the cavity mode (see

figure (6.9a)). Because only atoms within the cavity mode can scatter write-photons

into the cavity, the collective state produced via the write-process will not contain

any atoms in the wings of the pump-beams, and the inhomogeneous coupling to the

read-beam should be suppressed. In our more standard crossed-beam configuration

(see figure (6.9b)), the pump beams would have to be several millimeters across to

have any hope of attaining the same homogeneity factor.

We found a maximum in retrieval e�ciency when the cavity was detuned to the

blue of the Fg = 3 ! Fe = 3 resonance by 60MHz. At this detuning we believe that

the dominant consequence of the read beam inhomogeneity is the position dependent
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Read Pump

Figure 6.10: E↵ect of stark decoherence during readout. A magnon written in with a
finite-size pump beam generates a spin-grating (magnon) which will deflect a single
photon by 90�. As the magnon is read out, the read-pump generates a spatially
varying stark shift which distorts the grating and prevents it from scattering e�ciently
at 90�.

stark-shifts due to the Fe = 4 excited state. These stark-shifts distort the shape of the

phase grating and hence reduces the retrieval e�ciency of the source. An exaggerated

example of such an e↵ect is shown in figure (6.10).

To understand this process more quantitatively we note that in the low inho-

mogeneity limit, the state which reads out collectively into the cavity is given by

(dropping irrelevant spatial phase factors):

|fi =

r

1

N

X

j

�̂j
FG |⌦i (6.18)

Under the influence of the spatially inhomogeneous stark e↵ect, the this state

evolves during the readout process into the state (with ⌦0
r and �0

la the Rabi-coupling

and detuning, respectively to the dephasing level):

|fti =

r

1

N

X

j

e
i⌦

0j
r

2

�

0
la

t
�̂j
FG |⌦i (6.19)
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If the readout process takes on average a time tr, the fraction of the excitation which

can be super-radiantly read out after this time is given by:

�stark(t) = |hft |f i|2 (6.20)

Computing this expectation value by averaging over a 2D normal distribution of atoms

of e�2-waist size wsample (which will be wc for our actual experiment, as the write beam

co-propagates with the cavity), within a readout beam of waist wbeam � wsample,

yields:

�stark(t) ⇡ 1

1 + (4�st(
w

c

w
s

))2
(6.21)

Where �s(t) = ⌦0
r

2

4�0
la

is the ground-state stark-shift induced phase experienced by an

on-axis (maximally coupled) atom due to the next excited state after a time t. This

expression means that, if the excitation has not been read out or scattered into free

space after a time t, the probability that it remains in the super-radiant state is given

by �stark(t). From here we may compute the total probability that the collective

excitation scatters into the cavity:

�TOT =

Z 1

0

dt�stark(t)�cave
�(�

cav

+�
fs

)t (6.22)

We can compute this integral in closed form. In the on-resonant case, �cav =

�sc
N⌘

(1+N⌘)2 ,�fs = �sc
1

(1+N⌘)2 :

�TOT =
N⌘

1 + N⌘

⇢

⌫



Ci ⌫ sin ⌫ +
1

2
(cos ⌫)(⇡ � 2 Si ⌫)

��

⇡ N⌘

1 + N⌘

�

1 � 2⌫�2 + 24⌫�4 + . . .
�

⌫�1 ⌘ (
wc

wbeam
)2(1 + N⌘)

�s

�sc
(6.23)
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A measurement of retrieval e�ciency versus optical depth is shown in figure (6.11).

Initially, as expected, the retrieval grows according to � = N⌘
1+N⌘ . As the optical

depth grows, the readout slows (in the on-resonant dark state rotation limit), and

stark decoherence begins to destroy the excitation. The curve shown corresponds to

a slightly di↵erent fit form8 which is less accurate than the one given here, but also

includes a small contribution from dephasing of the magnon due to the write stark

shift, which should go away as the write beam induces less stark shift per atom, either

due to smaller nw or higher N⌘ (and hence less stark shift per atom for the same nw).

The fit curve has ( w
c

w
beam

)�1 = 3, in agreement with the measured 3.0(4).

It bears mention that our analysis assumes resonant readout, while the reality is

that we were detuned by ⇠ 60MHz on the readout process. Because of the high read-

intensity used, however, this was likely not a problem. In fact o↵-resonant readout

is typically slower than resonant readout, and so we expect that the detuning from

Fe = 3 may have made things worse.

In the limit of pump beam which is much larger than the atomic sample, we have

succeeded in understanding the dynamics. I wish there were a closed form expression

or simple perturbative expansion that I could provide which could be used to reach a

general conclusions for any geometry at any detuning, but alas if such an expansion

exists I have not been able to derive it9. Lacking an absolute scaling law or expression,

8The actually used fit form is: � = N⌘

1+N⌘

1q
1+( Aw

N⌘ �Ar(N⌘+↵))2
. Here A

w

parameterizes the

write stark decoherence as compared with the write scattering rate and n
w

, as well as the di↵erence
between coupling coe�cients for the write process. A

r

parameterizes the stark shift/scattering event
for the read process.

9The issue seems to be that the read pump, whose strength is typically the small parameter,
couples to other states which are degenerate with our initial state |fi, and so our perturbation series
diverges. A more careful application of the resolvent method might solve this problem.
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Figure 6.11: Experimentally observed retrieval e�ciency versus optical depth. Initial
rise with increasing optical depth results from collective suppression of the free-space
loss process. The eventual decay at large optical depth results from inhomogeneous
stark shifts decohering the magnon. The dotted curve is theory including only the
competition between free-space and cavity scattering, while the solid curve also in-
corporates the stark decoherence.
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the message seems to be:

Inhomogeneous pump couplings definitely make the 3-level model a bad approxima-

tion, and reduce the retrieval e�ciency, while inhomogeneous cavity couplings cause

no such problems. Inhomogeneities may be suppressed in any number of ways, but

must be taken seriously in the design phase in order to achieve much better than 50%

retrieval e�ciency.

6.6.3 Inhomogeneous Cavity Couplings

Although, as we have just seen, the cavity ladder does terminate almost immedi-

ately, we still must worry about how good the overlap is between the state which is

maximally coupled to the readout cavity mode, and the state produced by the write

process followed by the application of a read pump beam. These are:

| superi /
X

j

g(xj)�
j
EG |⌦i

| readpumpi /
X

j

g(xj)⌦
w
p (xj)⌦

r
p(xj)�

j
EG |⌦i

(6.24)

Inserting the proper normalization constants, we compute the overlap of these two

states in the limit that ✏ = w
c

w
p

⌧ 1:

�cavinhomog ⌘ |h super | readpump i|2 ⇡ 1 � ✏4 (6.25)

This means that a fraction ✏4 of the read pump beam scatters non-collectively into

free-space. In the o↵-resonant limit of the retrieval process, this amounts to a renor-

malization of the optical depth Ñ⌘ ⇡ N⌘
1+2✏4 , which is quite ignorable. In the on-

resonant case, however, the collective readout is slower than the unsuppressed free
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space readout rate by a factor N⌘
(1+N⌘)2 , and so the situation is quite di↵erent. An anal-

ogous computation is performed in section (6.8.1), with the result being a maximal

achievable recovery of �max = 1 � 2"2.

For ✏�1 = 3, this expression predicts �max = 0.78, which is inconsistent with our

observation of ⇠ 0.85 (especially once stark broadening is included as well). Given

that the detuning from atomic resonance was ⇠ 60MHz, the o↵-resonant analysis is

more appropriate, and so we do not expect to be limited by this e↵ect.

6.7 Distortion of the Cavity Mode by the Atoms

One might be inclined to wonder what impact the spatially varying index of re-

fraction of the atomic sample has on the cavity mode shape. Might not the atoms

cause some lensing of the beam going past them, especially in the limit of many passes

that one experiences within a resonator?

It turns out that for samples which are large compared to the cavity waist, this

is not a particular concern, as the orthogonality of the cavity modes an prohibits

collective couplings of the magnons to higher order modes. This is equivalent to

saying that if the lens (atoms) has little curvature across the beam (cavity mode),

there will be little lensing. We operate in the limit of a MOT larger than the cavity

mode waist, and so we need not worry.

In the opposite limit of a sample well-localized within the cavity waist, there may

be cause for concern, as the collective couplings can be substantial. For a non-confocal

cavity, these couplings are o↵-resonant, and numerical calculations reveal that they

do not impact recovery.
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The concerning situation, then, is a confocal cavity coupled to an atomic ensemble

well localized within the cavity waist. In this limit the atom distribution breaks the

orthogonality between the transverse modes, and their degeneracy permits the atoms

to emit resonantly into higher order modes. I have often wondered if this mecha-

nism imposes limits on the performance of free-space sources, which are necessarily

confocal.

6.8 Alignment Imperfections and Misalignments

Imperfect optical pumping and beam polarizations give rise to a number of dif-

ferent, though all bad, e↵ects. We cannot hope to list them all, but go through a

number of the most important or interesting ones which informed our experimental

setup decisions.

6.8.1 Extraneous Read Pump Beam Couplings

This situation most often arises due to poor choice of pump beam polarization,

or imperfect polarization alignment. If our read-pump beam does not couple only to

the read-out transition, as in figure (6.12), the retrieval e�ciency becomes sensitive

to the detuning of the cavity from atomic resonance.

Far from atomic resonance the collective enhancement speeds up the cavity scat-

tering (by a factor N⌘), leaving free space scattering una↵ected. In this limit we

expect the retrieval to have the form:

� =
N⌘

1 + ✏+ N⌘
(6.26)
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Figure 6.12: Impact of imperfect read-pump polarization. If a small fraction ✏ of
the read pump power couples to a di↵erent excited state |Ebadi, we are left with the
hamiltonian shown. Far from atomic resonance this bad coupling slightly suppresses
the e↵ective cooperativity. Near atomic resonance it limits the maximum achievable
retrieval e�ciency.

Where ✏ is the fraction of read-pump power which has the wrong polarization (cor-

rected for coupling constant di↵erences. It is clear that in this limit N⌘ has simply

been renormalized to Ñ⌘ = N⌘
1+✏ , and so more atoms compensates for the extraneous

couplings.

In contrast, on atomic resonance the collective enhancement suppresses both cavity

and free-space scattering, but suppresses the free space process more (by the same

factor of N⌘). The improperly polarized component, on the other hand, always

scatters at the una↵ected free-space rate. In this limit we find the retrieval e�ciency

has the form (on EIT resonance):

� =
N⌘

1 + ✏(1 + N⌘)2 + N⌘
(6.27)

This curve eventually gets worse with increasing optical depth, as the readout is
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slowed by the collective process. It has a maximum at N⌘ =
p

1 + 1/✏ of � =

1 � 2✏(
p

1 + 1/✏� 1), which in the low loss limit is:

�max ⇡ 1 � 2
p
✏ (6.28)

This means that near resonance, even 5% of the read-power in the wrong polariza-

tion results in a maximum retrieval e�ciency of 65%! This requires only a ⇠ 7�

misalignment of a half-wave plate.

This phenomenon would be observable directly by scanning the readout beam

across the cavity resonance, while monitoring the retrieval e�ciency. As the beam

is tuned away from the EIT resonance and through the dressed states the recovery

occurs more quickly (though less e�ciently due to increased free-space scattering),

and hence we become less sensitive to the (fixed rate) free-space scattering.

Before we understood this e↵ect we would often make a poor choice of quantization

axis and read pump polarization (typically out of geometrical convenience): If the

read pump is x̂-polarized when the polarization needed is �+ = 1p
2
(x̂ + iŷ). This

results in fully half the power having the wrong (��) polarization. The reasoning

that the improperly polarized component ought not matter, as component coupling

to the collective process ought to “dominate,” is only valid in the large detuning limit.

6.8.2 Extraneous Cavity Coupling

Because of imperfect alignment between the cavity mode and the bias fields, or

poor choice of geometry, an extraneous atom-cavity coupling may exist on the read

process, which can re-scatter the emitted single photon into free-space, or shift the

location of the cavity resonance (see figure (6.13)). Atoms which do not participate
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Figure 6.13: Impact of extraneous cavity coupling. If a small fraction ✏ of the atom-
cavity coupling is to a di↵erent excited state |Ebadi, we are left with the hamiltonian
shown. The physics of this imperfection turns out to be precisely the same as that for
a pump coupling to another (frequency degenerate) excited state: Far from atomic res-
onance this bad coupling slightly suppresses the e↵ective cooperativity. Near atomic
resonance it limits the maximum achievable retrieval e�ciency.

in the write process (for example because they are not within the pump beams), but

that are within the cavity, may also be analyzed this way.

It turns out that we can block-diagonalize this Hamiltonian to contain bright- and

dark- states, coupled-to and uncoupled-from the cavity. The read pump beam couples

our initial state to both of them, leaving us with precisely the same hamiltonian

that we dealt with in the preceding section. The same conclusions about detuning

dependence may thus be reached.

It is for this reason, among a variety of others, that working near atomic resonance

is dangerous– our sensitivity to all sorts of misalignments is enhanced.
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6.8.3 Atoms in the Wrong Initial State- Optical Pumping

An imperfectly optically pumped sample results in di↵erent atoms having di↵erent

coupling strengths to the various pump beams, and cavity modes. This may be

understood as destroying the complete indistinguishability of the various atoms within

the magnon, or more simply as a sort of inhomogeneous broadening. As an extreme

example, imagine atoms in an initial state which couples strongly to the write pump

and write cavity, and only very weakly to the read pump and read cavity. These

atoms will generate write photons, but almost never the corresponding read photons,

and hence will reduce the retrieval e�ciency.

6.8.4 Atoms in the Wrong Intermediate State- Write Polar-

ization

If the write pump or write detection path polarization is misaligned, some write

photons will correspond to atoms in the wrong intermediate state. In order to achieve

collective coupling to the cavity during the read process, these atoms must undergo

a transition which returns them to their initial state- this transition has the wrong

polarization, and so the corresponding read photons will have the wrong polarization.

In the best case this will have the e↵ect of rotating the polarization of the read out

photon, since the read-photon is now a superposition of both polarizations. More

likely the dipole matrix elements will not be as favorable, and the retrieval e�ciency

will be reduced.
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6.8.5 Non-Participating Atoms in the Intermediate State:

Backgrounds and Reabsorption of Write Photons

At a write rate of nw scattered into the cavity per trial, a total of nt = n
w

⌘
w

atoms

scatter into 4⇡, where ⌘w ⌧ 1 is the single atom cooperativity for the write transition.

Of these nt atoms nj = nt ⇥ bwj atoms make the j transition where j 2 {��, ⇡, �+},

and bwj is the branching ratio of transition j.

Backgrounds read out slower than signal by a factor N⌘r, independent of the

detuning of the cavity from atomic resonance. As such we can estimate that the peak

value of the cross-correlation will be:

gwr ⇡ nwN⌘r
nw(nwN⌘r +

P

j nj⌘rbrj/b
r)

=
1

nw(1 +
⌘

w

/⌘
r

P
j

bw

j

br

j

/br

N⌘
r

)
(6.29)

So we see that in fact the gwr approaches the fundamental limit of 1
n

w

only in

the limit that N⌘r � ⌘w/⌘r
P

j b
w
j b

r
j/b

r, so that the second term within equation

(6.29) is suppressed. It is clear that having ⌘w � ⌘r would be a poor decision, as it

would increase our sensitivity to backgrounds, decreasing the gwr and increasing grr|w.

Ensuring that ⌘r � ⌘w is simply a matter of geometry and atomic level choices– all

cavity parameters drop out of the expression.

It also bears mention that the optical depth of absorbing atoms in the interme-

diate state is of order
P

j nj⌘w ⇡ nw, indicating that as nw approaches unity the

write photons begin to experience re-scattering into free-space by atoms in the in-

termediate state. This will degrade the observed cross-correlation and conditional

autocorrelations gwr and grr|w.
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6.8.6 Choice of Level Scheme

For many of the preceding imperfections, choice of level scheme has the potential

to make a big di↵erence. If, for example, the dipole matrix element for the pump

and cavity coupling transitions of interest are stronger than the matrix elements

corresponding to beams of other polarizations or atoms in other states, our sensitivity

to the pump polarizations, and optical pumping quality are suppressed. In contrast,

if the matrix elements for the desired transition are quite weak, we can become

tremendously sensitive to alignment errors!

6.8.7 Multiple-Excited-State E↵ects

There is an additional e↵ect, not considered thus far, arising from scattering o↵

of multiple excited-state hyperfine manifolds. At substantial detunings from atomic

resonance the interference of multiple scattering pathways becomes important for

both the collective readout and the free space scattering. Depending upon the signs

and amplitudes of the various detunings and coupling coe�cients, constructive and

destructive interferences result. These interference e↵ects may also shift the retrieval

e�ciency maximum around, so simply plotting versus optical depth at fixed detuning

can be quite deceptive.

While the perturbative methods used throughout this thesis may be used to com-

pute the impact of these e↵ects on retrieval e�ciency in closed form, the resulting

expression is very complicated and provide little insight. To give a taste of the com-

plexity, we have plotted the impact of the Fe = 3 and Fe = 4 excited states, at fixed

cavity detuning of 60MHz from Fg = 3 ! Fe = 3, versus pump detuning from the
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Figure 6.14: Impact of scattering o↵ of multiple excited states. Each curve shows the
retrieval e�ciency at a di↵erent optical depth N⌘, ranging from 1 to 101 in steps of 10.
The readout is performed at a cavity-detuning of 60MHz from the Fg = 3 ! Fe = 3
atomic resonance, where it is clear that the Fg = 3 ! Fe = 4 transition plays a role
in the readout-process. There is an atom-induced cavity shift arising from the second
transition, but more importantly the recovery e�ciency does not continue to rise with
N⌘, reaching a peak value of ⇠ 93%.

expected EIT resonance, for a perfectly optically pumped sample, at various optical

depths (referenced to the |Fg = 3,mF = 3i $ |Fe = 3,mF = 3i transition). These

curves are shown in figure (6.14).

It seems likely that without very careful choice of levels, this e↵ect could set the

ultimate limit on performance for an atomic-ensemble single photon source.

6.8.8 A Remaining Puzzle

Figure (6.15) shows a scan of retrieval e�ciency versus read-pump detuning from

atomic resonance under near-optimal conditions, revealing high retrieval e�ciency on

the peak, and little structure in the wings. In contrast, figure (6.16) shows retrieval

e�ciency versus read-pump detuning under highly non-optimal conditions- we are
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Figure 6.15: Retrieval e�ciency versus read-pump detuning from atomic resonance
under near-optimal conditions, with the location of the readout EIT resonance de-
picted with an arrow. Aside from the small shift resulting from read-beam induced
stark e↵ects and cavity couplings, the recovery peak has little structure and a single
maximum.

using a di↵erent level scheme, and the read-pump beam is incident from the side. It

does not seem that any one of the above mechanisms correctly predicts the detuning

dependence of all four curves in figure (6.16) at once. Either the dip in the middle

is too deep for the near-resonance case, or the e�ciency is not higher for the o↵-

resonance cases than the on resonance cases, or the relative peak heights are wrong.

The two-excited state models were not included in this analysis, nor were the inho-

mogeneous pump coupling models, as it seemed unlikely that they would produce

split spectra like this.

If one were interested in really optimizing this system for the maximum possible

retrieval e�ciency, spectra like (6.15) and (6.16) would be a good starting point.

They contain a real wealth of information, and fitting them to comprehensive models

of all of the above e↵ects at once could prove to be a valuable diagnostic tool.
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Figure 6.16: Retrieval e�ciency versus read-pump detuning from atomic under non-
optimal conditions. These data were taken at atom-cavity detunings of 5,25, 55, and
70 MHz, with the read-pump propagating orthogonal to the cavity mode. The peaks
are split, and the retrieval e�ciency is low.

6.9 Conclusion

Through a relatively systematic study of the decoherence mechanisms which limit

the performance of of a single photon source, we have realized a single-magnon

retrieval e�ciency of 84(11)%, with proven single photon character arising from

grr|w = 0.27(21). We have understood the readout-time dependence of the deco-

herence as arising from thermal motion by observing two distinct timescales in agree-

ment with our chosen beam geometry. If we use this Doppler curve to extrapolate our

single-magnon retrieval e�ciency to zero time, we anticipate a peak magnon-photon

conversion e�ciency of 90%. Larger pump-beam waists, more careful level selections,

and very careful optimization of polarizations would likely allow us to push this even

higher. To improve the coherence time we could add an optical lattice to confine the

atoms in the Lamb-Dicke regime.

Having understood a number of fundamental properties of single photon sources
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in atomic ensembles, we chose not to pursue high retrieval e�ciency further. This

was in part because this study was very di�cult and tedious, and in part because we

wanted to use our acquired knowledge to build interesting quantum devices.

In spite of the fact that our later experiments all operated at substantially lower

retrieval e�ciencies near 60%, the lessons we learned here were critically important.

Our later work used samples optically pumped in a rotating frame, and samples

defined by beams smaller than the spatial extent of the sample within the cavity.

Design of these experiments depended critically upon knowledge of what imperfections

we could tolerate, and which we could not- knowledge that we obtained through this

study.



Chapter 7

Quantum Bus Connecting Magnon

Memories

In the last chapter we discussed work towards understanding the fundamental

limits on the performance of collective excitations for making single-photon sources.

What we learned was essentially that the more indistinguishable the atoms can be

made, the more they behave as a single super-atom, all acting in unison to release

a single photon into the cavity mode. The natural question to ask, then, is how far

can we extend this super-atom analogy? Can we induce a second “super-atom” to

absorb a photon emitted by the first “super-atom”? Can we generate entanglement

this way? What about a quantum gate?

In this chapter we will show that, with the exception of the quantum gate, all

of the above is possible! We will first demonstrate the deterministic conversion of

a magnon in ensemble A into a cavity photon, and into a collective excitation of

ensemble B. We will then verify that the process is phase coherent, in the sense that

153
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a partial conversion generates entanglement-on-demand between the two ensembles.

The work described herein is summarized in the paper:

• J. Simon, H. Tanji, S. Ghosh, and V. Vuletic, “Interfacing Collective Atomic

Excitations and Single Photons” Nature Physics 3, 765 (2007).

The groups of Kuzmich and Lukin have performed similar pitch-and-catch ex-

periments between free-space ensembles, connected by an optical fiber[15, 78, 36].

Using EIT, they induce a B atomic ensemble to adiabatically stop a photon emitted

by the A ensemble. In a seminal (and contemporary) experiment, the Kimble group

demonstrated measurement-induced entanglement between two ensembles[19]. Later,

in an experiment quite similar in spirit to the work described here, the Kimble group

demonstrated deterministic entanglement [18].

Our experiment di↵ers in a number of ways from the aforementioned works, most

significantly in that both the A and B ensembles of our experiment are contained

within a single optical resonator, whereas in all of the above works, the two ensem-

bles are in free-space. Placing the two samples in the same cavity removes fiber

coupling losses, and greatly relaxes the phase-stability requirements for entangle-

ment generation. Additionally, our system admits a very simple physical picture

based upon two-atom strong-coupling cavity QED. In this language it is evident that

the emission/re-absorption experiment may be performed as a Rabi-flopping induced

transfer of a magnon from one ensemble, into the cavity (in the form of a photon), and

then into a magnon in the other ensemble. It may also be performed as an adiabatic

transfer[88] between ensembles. It is now clear that a partial transfer will generate

entanglement between the ensembles.
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While the works of the Kimble, Kuzmich, and Lukin groups are most relevant to

applications in quantum communication and repeaters, this work may be regarded as

a step towards connecting quantum memories connected via a bus, for example for

quantum computing or simulation. Such a bus needs to be phase stable, as coherence

between the two memories will otherwise be destroyed as the path-length between

them drifts. Generating entanglement between the ensembles via adiabatic transfer

has the advantage that the phase coherence is sensitive only to the relative path

length jitter between the two transfer beams, between the write-in and read-out. The

apparatus is thus insensitive to DC path length drifts, and requires sub-wavelength

spatial stability for timescales ⇠ Tstorage, which in our case is ⇠ µs. There is little

acoustical noise on these timescales, and hence the apparatus need not be actively

stabilized by interferometer, as in [19].

Before we proceed to the experimental details, we shall take a brief detour to

investigate how e�ciently one can hope to transfer a collective excitation between

two ensembles within an optical resonator.

7.1 The Transfer Process: Formalism

Our previous work with single-photon sources leads us to believe that the only

important parameters ought to be NA⌘ and NB⌘, independent of detuning from

atomic resonance, as these quantify the absorption cross sections of the two samples.

One might suspect that since the one-photon cross-section decreases o↵-resonance, so

too should the transfer e�ciency. In fact the two-photon absorption cross section is

independent of detuning from atomic resonance[13], and so we expect no excited-state
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detuning dependence.

One might also expect the transfer to have an e�ciency of N
A

⌘
1+N

A

⌘
N

B

⌘
1+N

B

⌘ , in analogy

with a single-photon source, and its time reversal. This is not the case, however, as

a single-photon source need not keep the whole photon within the cavity mode at

one time– cavity leakage is permissible. In contrast, coherence transfer depends upon

small cavity leakage, and hence, as we will see, requires larger optical depth.

A formal understanding of the adiabatic transfer process may be reached using the

methods of chapter (2) to generate the collective states participating in the transfer

process, and their couplings under the influence of the Hamiltonian. We ignore all

inhomogeneous coupling e↵ects, as they do not impact the fundamental physics:

Having prepared a collective excitation in the A sample via the write process, the

transfer process between the two samples may be understood in terms of a five-level

system (see figure (7.1)). converting a collective excitation in the A sample into a

cavity photon, into a collective excitation in the B sample. The collective excitation

prepared by the write process is:

|fAi ⌘
r

2

N

X

j2S
A

ei
~kp

w

· ~x
j cos(~kc

w · ~xj)�
j
FG |⌦i (7.1)

where SA(SB) is the set of atoms addressed by the A(B)-sample pump beams. The A-

sample read-pump beam (with Rabi frequency ⌦A
p ) converts the ground-state magnon

into a polariton:

|eAi ⌘
r

2

N

X

j2S
A

cos(~kc
w · ~xj)�

j
EG |⌦i (7.2)

The atom-cavity coupling converts the state |eAi into a state with a single photon in

the cavity:

|ci ⌘ a† |⌦i (7.3)
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Figure 7.1: Hamiltonian for magnon transfer between two atomic ensembles A and B.
The magnon in the A ensemble |GAi is converted into a polariton (|EAi) via the A-
pump beam with Rabi frequency ⌦A. The polariton in ensemble A collectively emits
into the cavity, generating a cavity photon (|Ci) with Rabi frequency

p
NAg. This

cavity photon is then absorbed by the B ensemble, generating a polariton (|EBi) with
a Rabi frequency

p
NBg. Finally the polariton in the B ensemble is converted into

a magnon in the B ensemble with Rabi frequency ⌦B, by the B-pump beam. This
Hamiltonian applies regardless of whether the transfer is adiabatic, or a four-photon
Rabi-flop, or something in-between.
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with a collective Rabi-frequency
p
NAg. Before the photon can leak out of the cavity,

it is collectively absorbed by the B-sample, with collective Rabi-frequency
p
NBg,

generating the state:

|eBi ⌘
r

2

N

X

j2S
B

cos(~kc
r · ~xj)�

j
EG |⌦i (7.4)

The atoms are then de-excited the B pump-beam with Rabi-frequency ⌦B
p , into the

state:

|fBi ⌘
r

2

N

X

j2S
B

e�i~kp

r

· ~x
j cos(~kc

r · ~xj)�
j
FG |⌦i (7.5)

In this notation, the Hamiltonian (depicted in figure (7.1)) is then:

H = (� + I
�

2
)(|eAi heA| + |eBi heB|) + I



2
|ci hc|

+ (
⌦A

p

2
|eAi hfA| +

⌦B
p

2
|eBi hfB| + H.C.)

+ (
p

NAg |ci heA| +
p

NBg |ci heB| + H.C.) (7.6)

Having ascertained the levels which are coupled during the transfer process, the

question becomes: How e�ciently can we transfer an excitation from |fAi to |fBi,

without losing it due to free-space scattering from the excited states |eAi and |eBi or

cavity leakage from the state |ci?

We will show that the transfer e�ciency is a function only of N⌘ whether we are

far o↵ resonance, in which case we may consider the transfer process as multi-photon

Rabi flopping, or on resonance, where we may consider the transfer as an adiabatic

dark-state transfer.
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Figure 7.2: 3-Level Hamiltonian for o↵-resonant transfer of a single magnon between
ensembles A and B. The couplings !A and !B are e↵ective, two-photon Rabi cou-
plings. In this limit the levels |GAi and |GBi have acquired linewidths(not shown)
arising from their couplings to |EAi and |EBi.

7.1.1 O↵-Resonant Case: Four-Photon Rabi Flopping

In the case that we are detuned from the excited state by �, and the cavity by �,

we may adiabatically eliminate the cavity and excited states, leaving the three-level

Hamiltonian shown in figure (7.2). We may then compute the loss during a ⇡
2 pulse

from |fAi to |fBi:

For computational simplicity we will set NA = NB = NS, with ⌦A
p = ⌦B

p = ⌦s
p.

We will work below saturation, in the large detuning limit, such that ⌦p,
p
Ng < �,

⌦p

p
Ng < ��,� > , and � > �. This gives us a loss rate from each of our two

remaining states of �t =
⌦s

p

2

4�2

� +
(
⌦

s

p

2

p
N

S

g

2�

)2

4�2 , and a four-photon Rabi frequency of
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⌦4 =
(
⌦

s

p

p
N

S

g

2�

)2

2� .

In the limit that ⌦4 > �t, the transfer Rabi-flopping process requires at time

T ⇡ ⇡
⌦

4

. The transfer e�ciency Qtransfer is then given by the flopped population:

Qtransfer = e��
t

T = e� ⇡�

t

⌦

4 (7.7)

We optimize this e�ciency over �, the detuning from the cavity resonance, and find

a maximum at a detuning of � =
p
NS⌘


2 of:

Qmax
transfer = e

� 2⇡p
N

S

⌘ (7.8)

This maximum may be understood as a tradeo↵ between losses due to cavity leakage

and losses due to free-space scattering. If the detuning from the cavity state |ci

is small then the ⇡
2 pulse takes places very quickly, and there is little free space

scattering, but the cavity leakage rate is high. If the detuning from the cavity state

is large then there is very little cavity leakage, but the ⇡
2 pulse is quite slow, so there

is a lot of free-space scattering. It is interesting that the performance is not actually

dependent upon the pump strengths, or detuning from the excited states, as long as

they have appropriate values for adiabatic elimination of the excited state (ie we are

in the detuned limit).

Considering instead the (slightly more accurate) expression:

Qtransfer = e��
t

T sin2 ⌦4

2
t (7.9)

and optimizing over both T and �, we find:

Qmax
transfer =

NS⌘

4 + NS⌘

 

s

�1 +
4

2 � i
p
NS⌘

!

4ip
N

S

⌘

(7.10)
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This expression is somewhat more accurate at small NS⌘.

Using an analysis similar to the simpler of the above two, and allowing for di↵erent

pump strengths ⌦A
p and ⌦B

p , as well as di↵erent atom numbers NA and NB reveals

an optimum for
⌦B

p

⌦A

p

= 4

q

N
A

N
B

, of:

Qmax
transfer = exp

0

@� 2⇡
q

⌘ 2N
A

N
B

N
A

+N
B

+2
p
N

A

N
B

1

A (7.11)

If NA = NB this expression reduces to equation (7.8), as expected. If either NA or

NB is substantially larger, the transfer e�ciency is then limited by the smaller of the

two. What this means is that we cannot e�ciently transfer from an ensemble to a

single atom if the system is in the ensemble strong-coupling limit, but the single-atom

weak coupling limit.

7.1.2 Resonant Case: Dark State Rotation

When atomic and excited state detunings are small (�,� = 0), the transfer process

must be performed using the so-called counter-intuitive pulse sequence, or STImulated

Raman Adiabatic Passage (STIRAP[87]). In this process, the system is constantly

maintained in a dark state of the control laser beams, such that the atom is never

placed in an excited state, and hence may never scatter into free-space. By adjust-

ing in time the relative intensities of the pump beams, the excitation is transferred

from the A-sample to the B-sample. The more slowly the process takes place, the

less diabatic excitation of the atoms occurs, and hence the less freespace scattering.

When the excitation is shared equally between the two samples, however, there is a

substantial cavity population. As such, if the transfer process takes place too slowly,
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much of the excitation will be lost into free-space. We will now estimate the optimal

transfer rate.

For computational simplicity we will choose equal atom numbers for the two sam-

ples, NA = NB = NS, and a pulse sequence ⌦A,B
p = ⌦s(sin↵t, cos↵t). ⇡/2

↵ is now

the time required for the transfer process. Under these conditions the dark state of

equation (7.6) at time t is given by:

| Di =
cos↵t |fAi � 1

2

⌦s

p

2
p
N

S

g
sin 2↵t |ci + sin↵t |fBi

q

1 + 1
2(

⌦s

p

2
p
N

S

g
)2 sin2 2↵t

(7.12)

The cavity loss during the transfer process is given by (where for simplicity we

assume ⌦s
p ⌧

p
NSg):

Lcav =

Z

⇡

2↵

0

dt |hc | D i|2 

=
⇡⌦s

p
2

64NSg2↵
(7.13)

The loss due to diabatic transitions may be computed by realizing that in the basis

of instantaneous eigenstates {|ji}, there is an additional coupling between amplitudes

of the form[75]: �
P

j

�

d
dt |ji

�

hj|. From this we see that(again for ⌦s
p ⌧

p
Nsg):

d

dt
| Di ⇡ �↵ sin↵t |fAi �

↵⌦s
p

s
p
NSg

cos 2↵t |ci + ↵ cos↵t |fBi (7.14)

So we see that non-adiabaticity drives Rabi-couplings to bright components of the

atomic ground state, with Rabi-frequencies given by ⌦A,B
D = 2↵{sin↵t, cos↵t}. These

bright components of the atomic ground state have linewidths of order �A,B
Bright =

⌦s

p

2

� ⇥ {sin2 ↵t, cos2 ↵t} set by their coupling to the excited state. As such the rate of

population leaving the dark state due to the diabatic couplings is �A,B
Diabatic =

⌦A,B

D

2

�A,B

Bright

=
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↵2

⌦s

p

2/�
, and so the total loss due to diabatic couplings is:

LDiabatic = (�A
Diabatic + �B

Diabatic)
⇡

2↵

⇡ 8↵2

⌦s
p
2/�

⇡

2↵
(7.15)

Combining this expression with the cavity loss terms gives for the total loss:

LTot = Lcav + LDiabatic

=
⇡⌦s

p
2

64NSg2↵
+

8↵2

⌦s
p
2/�

⇡

2↵
(7.16)

Minimizing this quantity over ↵ yields a maximum for ↵ =
⌦s

p

2/�

8
p

2
p
N

S

⌘
of:

LTot =
⇡p
NS⌘

(7.17)

In the small loss limit where this expression is valid, it is identical to the expression for

the o↵-resonant case, up to a factor of 2. Because the on-resonant case was computed

only approximately, owing to the complicated dark-state rotation angle dependence,

this small discrepancy in numerical factors is not so surprising.

7.1.3 Interpretation

In the large optical-depth limit, the failure rate of a triggered single-photon source

is Lsource ⇡ 1
N

S

⌘ . Our initial expectation was that the dark-state transfer could be

understood as emission and then absorption of a single photon, and hence would have

an error rate Ltransfer ⇡ 2
N

S

⌘ . Our calculation reveals that because the transfer will

only be successful if the excitation does not leak out of the cavity, it has a loss rate

Ltransfer ⇡ 2⇡p
N

S

⌘
. This is not so surprising, as it indicates that the (coherent) transfer
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process, which is essentially a Rabi-flopping process, has an e�ciency which scales as

1p
⌘ / 1

g , and not 1
⌘ / 1

g2

This square-root scaling of the transfer with optical depth means that we need

a much higher optical depth than we would need to achieve similar e�ciencies for

a single-photon source. This is very interesting because there are schemes to make

quantum gates using single atoms within an optical cavity, and adiabatic transfer[88].

In order to attain a gate fidelity of 99% a single-atom cooperativity of ⌘ = 400000

would be required. The highest realized cooperativity in cold-atom cavity QED exper-

iments is ⇠ 400 for Fabry-Perot resonators[96], with an anticipated maximum[55] of

approximately ⇠ 6000, for a cavity of length �
2 ! This is still a far cry from ⌘ = 400000,

indicating that quantum computing will be very di�cult to realize with a Fabry-Perot

cavity. By contrast, the toroidal resonators[115, 25] have the potential to reach single

atom cooperativities of order 5 ⇥ 106, making them a much more realistic candidate

for fault tolerant quantum computing.

More to the point for our experiment, we see that with a modest optical depth

NS⌘ ⇡ 10 we expect to be able to achieve a transfer e�ciency e
� 2⇡p

N

S

⌘ ⇡ 0.14. In fact,

the above adiabatic models become inaccurate in the large-loss limit, and numerical

modeling reveals that in fact an optical depth of 10 will allow admit a substantially

higher transfer e�ciency of 40%. We have also shown in this section that we are free

to work at whatever detuning from atomic resonance is most technically beneficial,

without sacrificing transfer e�ciency.
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7.2 Experimental Setup

In qualitative terms, our experiment is quite simple: We prepare two atomic

ensembles A and B within an optical resonator, and drive the write-process in sample

A. Detection of a write-photon prepares a magnon in ensemble A. Reading out this

magnon generates a read-photon within the cavity, which may then be absorbed by

ensemble B. By applying a laser beam to the B ensemble we may cause it to convert

the absorbed photon into a magnon in ensemble B, rather than scattering it into free-

space. Depending upon whether we want to demonstrate a transfer or entanglement,

we either read out the magnon directly from sample B into the cavity mode, or make

more sophisticated joint measurements of the two ensembles.

Our experimental setup is shown in figure (7.3). Instead of preparing two spatially

distinct samples within two optical dipole traps/lattices, we work with one large

polarization gradient cooled MOT at temperature T ⇡ 20µK of rms size 1mm. From

this MOT we simply select out two samples with spatially non-overlapping beams.

The A sample is defined by a write-beam and a phase matched read-beam. The B

sample is defined by only one pump beam. This is because the transfer process writes

a magnon into the B sample via stimulated emission into the pump beam, and so

read-out from the B sample will be phased matched with a single photon absorbed

from the same beam.

Because the pump-beams define the samples there are a quite a number of atoms

within the cavity mode which are part of neither sample A nor sample B. This

means that the transfer and read-out processes must take place at finite detuning

from atomic resonance to avoid re-absorption by the non-participating atoms. With
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Figure 7.3: (A) Schematic of experimental setup to demonstrate adiabatic transfer
of a magnon from one sample (A) to another (B). The two samples subsets of the
atoms within a single MOT, defined by the pump beams. All inferences about atomic
states are made via measurement of the cavity leakage detected on two SPCMs which
are coupled to the two polarizations of the TEM00 mode of the cavity. The inset
shows the MOT with the pump-beam defined sub-samples overlaid. (B) The level
scheme chosen for the write-in and read-out/transfer. Because the intermediate state
|Gi is in a di↵erent hyperfine groundstate from the initial state |Si, the write-in and
read-out took place four cavity FSRs apart and hence had di↵erent detunings from
the excited state. A read detuning of 20MHz was experimentally found to limit re-
absorption of read-photons by non-participating atoms while minimizing other sources
of decoherence which could reduce the transfer and retrieval e�ciencies.
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Figure 7.4: Schematic of the STIRAP sequence to transfer a magnon from a sample
A and to a sample B. (i) The B pump is applied to the B-sample, ensuring that the
system dark-state is exclusively |GAi. (ii) The A-pump is turned on adiabatically so
that the system remains in the “dark”-state, with the magnon is shared between the
two samples. (iii) the B-pump is adiabatically turned o↵, (ideally) leaving the entire
magnon in the B sample.

this consideration in mind we chose to read out (and transfer) � = 20MHz o↵ of

atomic resonance. At this detuning, the non-participating atoms only broaden out

the cavity resonance by  ⇥ N
nonpart

⌘

1+( �

�/2

)2
⇡  ⇥ 0.02 ⇥ Nnonpart⌘. As such, even a non

participating optical depth Nnonpart⌘ = 10 only increases the cavity linewidth by 15%,

reducing the transfer e�ciency by a similar amount. By the same token, at an optical

depth NS⌘ = 1, 2
p
N

S

g
� ⇡ 1

3 , and so the transfer process is nearly on-resonance. As

such we can treat the transfer process as a dark-state rotation and use the counter-

intuitive STIRAP pulse sequence, shown in figure (7.4).

The experiment was performed in a cavity with finesse F ⇡ 240, and a waist

size of wc ⇡ 110µm. This yields a maximum cooperativity of ⌘ ⇡ F
“500

�2

w2

c

⇡ 3 ⇥

10�3. The cavity length of 6.6cm gives a cavity linewidth  = 2⇡ ⇥ 9.5MHz. The

pump beams have waist of wp = 210µm, defining samples of r.m.s. dimensions1

55µm⇥55µm⇥105µm, separated by 390µm, as shown in figure (7.3a, inset). The

read-pump beams have typical Rabi frequencies ⌦A,B ⇡ 2⇡ ⇥ 50MHz.

1The other two sample dimensions are determined by the cavity waist w
c

.
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7.3 Polarization Sensitive Cavity Transmission

Spectroscopy: Optical Pumping

As we learned previously, high quality optical pumping is critically important to

achieving strong coupling and high readout e�ciency of stored magnons. In this

experiment we moved away from microwave spectroscopy for optimizing our optical

pumping, and instead used a polarization sensitive cavity transmission spectroscopy.

This was achieved by temporarily tuning the cavity to an atomic resonance wherein,

once the sample was properly pumped, one polarization would couple strongly to the

atoms and experience a large vacuum Rabi splitting, and the other would be entirely

uncoupled from the atoms and hence have no vacuum Rabi splitting.

Because we have many atoms in our system, we could scan across the full Rabi-

resonance in a single run, compared to the hundreds of runs necessary to achieve a full

microwave spectrum.2 Achieving good optical pumping is subtle and time consuming,

as one must simultaneously optimize the polarization of the pump beam, the direction

of the bias field, and the orientation of polarizing optics in the detection path. We

must ensure not only that the sample is well polarized along the quantization axis

defined by the bias field, but also that this field is aligned relative to the cavity

axis. Cavity spectroscopy is sensitive to all of these misalignments, while microwave

spectroscopy is insensitive to the alignment of the bias field to the detection axis.

2While there were tricks to make microwave spectroscopy based optical pumping optimization
faster, I did not find them to be as robust as the cavity transmission spectroscopy technique. For
initial alignments and magnetic field zeroing in particular, the microwaves are quite helpful, as they
provide more detailed information about the atomic population distribution and the magnitude of
the magnetic field via the Zeeman splittings.
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As our experiments have grown in complexity and good optical pumping has become

more crucial, we have found real-time diagnostics for optical pumping to be invaluable.

7.4 Experimental Transfer Sequence

At the beginning of each trial, all atoms are optically pumped into the state

|Gi = |F = 4,mF = 4i by two circularly polarized laser beams propagating along the

900 mG bias field which defines the quantization axis. This bias field is oriented in the

ẑ direction, perpendicular to the cavity axis. The write beam, which propagates in the

plane of the quantization axis, and is polarized along it, is applied to the A sample for

90ns, tuned 110MHz to the red3 of the |Gi ! |Ei ⌘ |F = 40,mF = 4i transition, at a

typical peak intensity of 100mW/cm2. The cavity is tuned to the write-beam Raman

resonance on the hyperfine changing |Gi ! |Ei ! |F i ⌘ |F = 3,m3i transition.

Detection (via SPCM) of a “write” photon leaking from the cavity heralds the creation

of a magnon in the A sample, projecting the system into the state |fAi4.

Subsequent to the detection of the write photon from ensemble A, application of a

phase-matched read pump beam was used to convert the magnon into a single photon.

This beam was linearly polarized5 along the cavity (ŷ) axis, and tuned 20MHz to the

3The write detuning was chosen so that the read process could take place at a detuning of 20
MHz from atomic resonance.

4Our level selection means that the atom may only scatter �+-polarized photons when it under-
goes the hyperfine changing transition. Only the x̂ polarized component may be scattered into the
cavity, and so we polarization analyze with a PBS and condition upon only x̂-polarized detection
events.

5One might worry that the read beam would also drive |F i ! |E0i ⌘ |F = 40, m
F

= 2i free-space
scattering, destroying the magnon rather than reading it out. It turns out that the coupling matrix
element for this process is smaller by a factor of ⇠

p
40, and so the rate is suppressed by a factor of

⇠ 40. Even in the on-resonance limit, where collective e↵ects slow down the transfer and readout,
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blue of the |F i ! |Ei transition, such that another cavity mode, 4 FSR’s from that

used from the write process, was in resonance with the field scattered on the |F i !

|Ei ! |Gi transition. The beam used for this readout process has a typical Rabi

frequency of ⌦A
p = 2⇡⇥40MHz, at a waist size of 210µm. With this setup we observe

retrieval e�ciencies nearing 40%, limited by the sample optical depth NA⌘ ⇡ 16 The

total detection e�ciency for a photon generated within the cavity was qe = 0.11(2),

due to the quantum e�ciency of the photon counter (qspcm = 0.40(5)), cavity output

coupling (qcav = 0.43(1)), and fiber coupling and other losses (qmisc = 0.66(4)).

The transfer was realized by application of a second pump beam, ⌦B
p , defining

the B ensemble, which was phase-locked to ⌦A
p , with parallel propagation direction

and polarization.. The B-pump had a Rabi frequency of 2⇡ ⇥ 70MHz, and was

turned on in accordance with the counter-intuitive STIRAP pulse sequence described

previously. The lasers need to be phase locked because any phase jitter between them

destroys the coherence of the transfer process- this would both reduce the transfer

e�ciency, and ruin any entanglement generated by a partial transfer. This phase lock

is achieved by deriving both ⌦A
p and ⌦B

p from the same laser, switched with AOMs

driven with the same RF signal. For entanglement verification it will be important to

adjust the optical phase between write-in and read-out, which we achieve by jumping

the RF-phase sent to one of the AOMs (see figure (7.5)).

The pump waveforms ⌦A
p (t), ⌦B

p (t) used for the STIRAP transfer process are

this free space scattering rate is not enough to limit our experiment, owing to its small OD.

6Increasing the optical depth would have been di�cult, and we would quickly have run into limits
arising from inhomogeneous broadening due to the pump waist being substantially smaller than the
MOT size. Dipole traps to increase the density and create two spatially separated samples would
have solved these problems.
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Figure 7.5: Setup for fast (100ns) jumping of ⌦b phase between transfer and readout.
⌦A and ⌦B are derived from the same laser. For the transfer process the two pump
beams ⌦A and ⌦B are driven by the same synthesized source. For the readout the ⌦B

is switched to a second, phase-locked source which is phase-shifted by �. The delay
of 100ns arises from the latency of the RF switch and propagation delays in cables
and in the acousto-optic crystal.
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Figure 7.6: (A) Schematic of adiabatic transfer process. (B,C) Measured pump
waveforms for cavity mediated adiabatic transfer of a magnon between atomic en-
sembles. The B pump is turned back on in order to read the transferred excitation
back into the cavity, for verification purposes. (D) Observed cavity leakage during
transfer and readout. Inset: Blue is cavity leakage in the absence of a pump beam
on the B sample, and red is with the pump beam on the B sample present. The
suppression of cavity leakage in the presence of the B pump is a signature of the
dark-state suppression of cavity population.
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shown in figure (7.6b,c), with the corresponding cavity leakage in figure (7.6d). As

is visible in the cavity leakage waveform, the B-pump is turned back on to read the

excitation back into the cavity at a later time, as a means of measuring the transfer

e�ciency. Assuming that sample B has a readout e�ciency similar to sample A, we

observe transfer e�ciencies between 10% and 25% for optical depths NA,B⌘ between

.4 ⇠ 1. These e�ciencies are substantially better than what we would expect from

equation (7.8), indicating that the adiabatic elimination used to derive this equation is

invalid in the large-loss limit. Direct numerical integration of the di↵erential equations

yields a maximum transfer e�ciency of 6% for NS⌘ = 1, and 24% for NS⌘ = 4 (see

figure (7.7)), indicating that we have most likely under-estimated our atom number.

Figure (7.6d, inset) shows the cavity leakage during the transfer both with, and

without, the B-pump beam. In the absence of the B-pump, there is substantially

more cavity leakage- this is direct evidence that our understanding of the transfer as

a dark state rotation with suppressed cavity population is valid.

7.4.1 Aside: Excitation Lifetimes and Transfer-Induced En-

hancement

The recovery versus storage time from each of the A and B samples are shown in

figure (7.8). These curves have the gaussian shape typical of doppler decoherence, as

described in chapter (6). The lifetimes of 1.3µs and 1.7µs in the A and B samples,

correspond to temperatures of 50µK and 20µK, respectively. To compute these tem-

peratures we utilize our knowledge of the 90� angle between pump-beams and cavity

axis. It is not so surprising that the A sample is at a higher temperature, as we scatter
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Normalized Pump Waveforms

State Populations
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Figure 7.7: Simulation of the 5-level dynamics of the transfer process. The dashed
curves show the normalized A and B pump intensities in red and blue, respectively.
The solid curves show the populations of |fAi, |ci, and |fBi in red, green, and blue
respectively. The simulation takes place at N⌘A,B = 4, with peak pump intensities
⌦max

A,B = 2⇡ ⇥ 10MHz, on atomic resonance. The transfer e�ciency is 24%.
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Figure 7.8: Coherence time of original and transferred magnons. The open red squares
correspond to the retrieval e�ciency of the magnon written into the A sample, while
the filled black circles correspond to the retrieval e�ciency of the magnon transferred
to the B sample. The solid red curve is a gaussian fit to the A data, with a doppler
lifetime of 1.3µs corresponding to 50µK. The solid black curve is a gaussian fit to the
B data, with a doppler lifetime of 1.7µs, corresponding to a temperature of 20µK.
The temperature di↵erence arises from recoil heating of the A sample.

many more photons o↵ of it during the write process, leading to recoil heating.

The gaussian decay of the recovery for the transferred excitation is consistent with

a curve centered on the transfer time, indicating that coherence is reset upon transfer.

It is thus conceivable that given su�ciently high transfer e�ciency, one could increase

the storage time of a magnon by transferring it between samples before the doppler

decoherence destroys it. This is more a curiosity than a useful tool, since long storage

times can also be achieved via the Lamb-Dicke regime[29] in an optical lattice[35].

As an example (see figure (7.9): At ⌧ = 10⌧D, we expect a retrieval e�ciency

of e�100 ⇡ 10�44. At a transfer e�ciency of 90%, the optimal retrieval of 14% is
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Figure 7.9: Enhancement of magnon lifetime via repeated adiabatic transfer. Gold
Curve: No adiabatic transfers, and hence a simple gaussian decay of excitation as the
storage time is increased. Blue Curve: Transfer e�ciency of 25%, and Red Curve:
Transfer e�ciency of 90%. We see that within 3 doppler times the transferred magnon
has a larger survival probability than the untransferred magnon by ⇠ 2 orders of
magnitude, even for a transfer e�ciency of only ⇠ 25%.
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achieved with 12 transfers. Even at a transfer e�ciency of 25%, 5 transfers increase

the retrieval e�ciency to 10�5, an improvement by 39 orders of magnitude!

7.5 Entanglement Generation and Verification

We begin by rewriting the expression for the dark state of the system during the

transfer process, including an additional spatial phase arising from the di↵ering path

lengths for the A and B pumps, '

| Di =
cos↵t |fAi � 1

2

⌦s

p

2
p
N

S

g
sin 2↵t |ci + ei' sin↵t |fBi

q

1 + 1
r (

⌦s

p

2
p
N

S

g
)2 sin2 2↵t

(7.18)

we see that for ↵t ⇠ ⇡
4 , the excitation is shared between the A and B samples, with

only a small cavity population in the limit that ⌦s <
p
NSg (ie �sc < NS⌘). If we

were to simultaneously turn o↵ both A and B pumps while maintaining the intensity

ratio (or turning them o↵ non-adiabatically to prevent further population transfer),

we ought to end up in the entangled state:

| Di = cos ✓ |fAi + ei' sin ✓t |fBi (7.19)

The remainder of this chapter is concerned with performing this experiment, and

characterizing the state so generated!

Before we concern ourselves with proving that we have generate entanglement, it

is worthwhile to first think about what sorts of indications of entanglement we might

expect, and then combine them to prove entanglement.

Entanglement requires both correlation and coherence. As such, the first thing

to check is that, after this partial transfer, we have an excitation in either sample A,
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p00 pA pB pA&B

0.88 0.08(1) 0.030(4) 0.0005(2)

Table 7.1: Magnon Occupation Numbers after Partial Adiabatic Transfer. Magnon
Probabilities in two samples A and B measured by independent and joint readouts of
the two samples. The magnon statistics are extracted from the photon statistics by
assuming equal retrieval e�ciencies given by magnon retrieval e�ciency from sample
A in the absence of a transfer, and using the known detection path quantum e�ciency.

or sample B, but not both. To do this, we sequentially read the excitations out of

the two samples, and measured the cross correlation between the extracted photons.

As shown in table (7.1), we measured magnon read-out probabilities (referenced to

within the cavity) of pA = 0.08(1), pB = 0.030(4), corresponding to ✓ = 32�. The

measured coincidence probability pA&B = 0.0005(1) corresponds to gAB = 0.21(8),

and implies a five-fold suppression of magnon coincidences between the A and B

samples, compared with what we would expect if the samples were independently

prepared in coherent states with mean pA and pB magnons, respectively. We have

also made measurements at ✓ = 45�, but our largest dataset was measured at ✓ = 32�.

In a separate measurement, we found that gAA = 0.13(8) ⌧ 1, indicating that before

the transfer we had only one magnon in the A sample.

To show coherence, we must verify that the phase between |fAi and |fBi in equa-

tion (7.18) is a well-defined and controllable quantity. We follow a method akin to

that of Chou et. al[19], and read out the two samples A and B at the same time,

and jump the phase of the B pump by � . When � = 0, the cavity amplitudes from

the two samples will destructively interfere, resulting in very little cavity readout.

When � = ⇡, the amplitudes will constructively interfere, resulting in maximal cavity

readout.
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Figure 7.10: Coherence verification in the Super/Sub Radiant Basis: The readout
Hamiltonian, depicted schematically on the left, may be block diagonalized into super-
and sub- radiant hamiltonians. The super-radiant component reads out into the cavity
with some probability, while the sub-radiant component is uncoupled from the cavity.
The phase between |GAi and |GBi that forms a super-radiant state is o↵set by ⇡ from
the phase used to generate the state. As such we can continuously tune from sub- to
super- radiant readout by varying the phase of the readout beams.

This constructive/destructive interference may be understood as preparing a su-

perposition of super- and sub- radiant states of the cavity. Even in the presence

of dissipation, the 5-level Hamiltonian may be block-diagonalized into Htransfer =

Hbright � Hdark, where Hbright is the 3-level hamiltonian of a magnon of 2NS atoms,

collectively coupled to the cavity, and Hdark is the 2-level hamiltonian of a magnon

of 2NS entirely uncoupled from the cavity (see figure (7.10)). The transfer process

prepares the sub-radiant state, and so it is necessary to adjust the relative phase of

the pump beams � to rotate this state into the super-radiant state. We expect the

retrieval e�ciency to be proportional to the overlap between super-radiant state, and
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the rotated state: � / |h super | i|2. In the simple case that ✓ = ⇡
4 , we have:

| superi =
1p
2
(|fAi � ei' |fBi)

| i =
1p
2
(|fAi + ei('��) |fBi)

! � / sin2 �

2
(7.20)

So we expect to observe a fringe which varies sinusoidally with �. The more general

analysis for unbalanced amplitudes, with backgrounds, is treated in appendix. (A).

Our experimentally measured fringe is shown in figure (7.11). We observe a fringe

visibility of V photonic = 0.88(4), which is consistent with a contrast limited by pop-

ulation imbalance (✓ 6= ⇡
4 ): V photonic

max = 2
tan ✓+1/ tan ✓ = 0.90(1). Optical backgrounds

arising from non-collective excitations or non-transferred (inhomogeneously broad-

ened) magnons could also limit our contrast. Double (collective) excitations should

generally be coherently transferred, and hence should not impact the fringe contrast.

One might also be concerned that adjusting � might somehow impact beam inten-

sities, and directly a↵ect the individual magnons rather than simply impacting their

phases. The worry would then be that the contrast fringe might be a result of this,

rather than interference between read-out from the two samples. The inset to figure

(7.11) shows the separate read-outs of the A and B samples, versus �, verifying that

the retrieval e�ciencies from the two samples are individually independent of �, so

adjusting the phase most likely does not otherwise impact the magnons.

In figure (7.12) we show the time dependence of readout waveforms for as we vary

the phase '��. While the amplitude of the readout waveform varies sinusoidally with

�, the shape is otherwise una↵ected, indicating that the super-/sub- radiant picture is

the right one: When the excitation is in the bright state, it always reads out according
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Figure 7.11: Coherence Verification between A and B Ensembles. Retrieval E�ciency
versus readout phase ' � � as both samples A, and B are read out simultaneously,
at a write rate nw = 0.02(1) per trial. The observed fringe has a contrast V photonic =
0.88(4), limited by the observed population imbalance between the two ensembles.
This large fringe contrast is indicative of the coherence between the two ensembles.
Inset: Another interference fringe taken at higher nw and ✓ ⇡ 45�, along wit separate
measurements of the readout e�ciencies of the two sample independently. The lack
of variation of the independent readouts with ' � � is an indication that adjusting
the readout phase is not somehow impacting the beam intensities.
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Figure 7.12: Readout Waveform versus phase angle ' � �. The sinusoidal variation
in retrieval e�ciency is evidence of the coherence between the samples. The fact that
the waveform simply scales, without a change in shape, is evidence of the super/sub
radiant dynamics.

to the super-radiant dynamics! All that changes with � is the probability that it is

in the bright state.

7.5.1 Aside on Phase Stability

The astute reader may worry that ' is uncontrolled and fluctuating, and will

wash out the fringe. As long as we read out along the same beam paths (as required

by phase matching), with the same beams used for transfer, the phase factor ' will

be precisely cancelled7, and we will be left with a fringe whose phase is determined

solely by �. Because Chou et. al. generated heralded entanglement, phase-matching

precluded readout with the same write beams, and so ' could only be controlled by

actively stabilizing the total optical path. This is not a critique of that experiment

so much as a comment that, save in exceptional situations like ours, coherence con-

7Up to path length fluctuations between the transfer and readout, which are quite small over the
intervening 100’s of ns, in our experiment.
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tained in photon number is much more delicate than coherence carried in photon

polarization- this is because the former is sensitive to path length variation, while the

latter is sensitive to only birefringence variation (di↵erential path length variation

between polarizations). It is true, however, that converting number entanglement to

polarization entanglement is non-trivial.

7.5.2 Concurrence and Entanglement of Formation

Having verified that we have both correlation and coherence, we would like to

prove that we have entanglement. We follow the method of Chou et al.[19], and

combine these pieces of information to compute the entanglement of formation[4] Ef .

In general, computation of the entanglement of formation is a very complicated

task. It requires a complete reconstruction of the density matrix of interest via to-

mography, and then a time-consuming numerical minimization. It happens, however,

that for a bi-partite, two-state system there is a closed form expression for the entan-

glement of formation[126]:

Ef = h

✓

1

2
[1 +

q

1 � C2
full]

◆

h(x) ⌘ �x log2 x � (1 � x) log2(1 � x)

Cfull ⌘ max(0,
p

�1 �
p

�2 �
p

�3 �
p

�4) (7.21)

and �1 . . .�4 are the eigenvalues, in decreasing order, of the (rank 4) operator:

⇢(�y ⌦ �y)⇢
⇤(�y ⌦ �y) (7.22)

Where ⇢ is the system density operator. Ef > 0 is equivalent to Cfull > 0.
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It still seems that we need to measure the full 4⇥4 density matrix for the bi-partite

two-level system, however, following logic similar to Chou et al.[19], and appendix (A),

one can show that ignoring coherences between di↵erent numbers of excitations will

only reduce Cfull. Since we are interested in putting a lower bound on the concurrence,

we will assume these elements are zero. In the subspace H1 = 0, 1A ⌦ 0, 1B of up to

1 magnon in each of the two ensembles, one can then show:

Cfull � C = max
h

2m(V magnon �
p

GAB), 0
i

(7.23)

Here we have defined m ⌘ p
m10m01, GAB ⌘ m00m11/(m10m01), and mij is the

probability to find i and j magnons in ensembles A and B respectively. V magnon is

the normalized magnon coherence within H1, as described in the appendix.

As a sanity check, one can consider the case a product state, in which we have

Poissonian magnon distributions in both samples A and B. Such a situation has no

entanglement, and so we would expect Cfull = 0. One can show (see appendix A)

that in this situation GAB = 1, and V magnon  1, as it is a fringe visibility. As such

C  0, so Cfull = 0, as we expect.

We can only directly measure photonic quantities, and not atomic ones, and so

we must place bounds on the magnonic quantities accordingly. In appendix (A) we

show that GAB  gAB, V magnon � V photonic. What this means is that measurements

that we have already made are su�cient to put a lower bound on the amount of

entanglement present in our system!

Using m � p
pApB = 0.049(6), we find that C � 0.041(11) (or C � 0.0046(11)

without correcting for detection path losses). In either case, we have verified that our

concurrence is greater than zero at the 4� level, which means that we almost certainly
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have entanglement8. Correspondingly, Ef � 0.0053(25), also indicating entanglement.

Our concurrence C is primarily limited by finite transfer and readout e�ciencies.

These e�ciencies could be increased by using an a dipole trap to increase the optical

depth and decrease the pump-beam induced inhomogeneous broadening.

81 in every 32000 graduate students to make a claim like this is wrong! How many PhD’s are
there each year in physics? ¨̂



Chapter 8

Heralded Polarization Preserving

Quantum Memory

Our final work with the old apparatus was a heralded quantum memory which

could preserve the polarization of a stored photon. Our scheme required optical

pumping in a Larmor precessing frame, which necessitated the development of rotat-

ing frame optical pumping characterization techniques. To achieve a stable Larmor

frequency we needed to suppress chamber eddy-currents, and so our sample was

loaded into a 1D optical lattice at 1064nm, to increase our hold time and allow the

eddy-currents to ring down. These improvements, as well as a detailed description

and characterization of the work, will be discussed in detail in the thesis of Haruka

Tanji. The work is also described in the paper[117] (which follows):

• H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletic, “Heralded Single-

Magnon Quantum Memory for Photon Polarization States” Phys. Rev. Lett.

103, 043601 (2009).
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Heralded Single-Magnon Quantum Memory for Photon Polarization States

Haruka Tanji,1,2 Saikat Ghosh,2 Jonathan Simon,1,2 Benjamin Bloom,2 and Vladan Vuletić2

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 26 August 2008; published 20 July 2009)

We demonstrate a heralded quantum memory where a photon announces the mapping of a light

polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles.

The magnon can be converted at a later time into a single polarized photon with polarization fidelity over

90(2)% for all fiducial input states, well above the classical limit of 2
3 . The process can be viewed as a

nondestructive quantum probe where a photon is detected, stored, and regenerated without touching

its—potentially undetermined—polarization.

DOI: 10.1103/PhysRevLett.103.043601 PACS numbers: 42.50.Ex, 32.80.Qk, 42.50.Dv, 42.50.Nn

Among systems for the storage of light, one can distin-
guish between a device that can retain an initially prepared,
and thus known, state [1,2], a quantum receiver that can
receive and retain any (unknown) incoming state [3], and a
quantum memory that can receive, retain, and recreate any
(unknown) incoming state for further processing [4–7].
The attribute ‘‘quantum’’ indicates that the device outper-
forms any ‘‘classical’’ device (that attempts to measure and
recreate the state) when averaged randomly over the
Hilbert space of operation [3]. For instance, a classical
polarization memory for single photons has a fidelity limit
of 2

3 since a single measurement allows only incomplete
characterization of an unknown input state.

Quantum communication can benefit from quantum re-
ceivers and memories [8–10]. Moreover, the detrimental
effects of photon loss can be largely remedied by a herald-
ing (‘‘state purification’’ [8]) feature that announces photon
arrival and storage without destroying or revealing the
stored quantum state. Heralded quantum memories may
thus advance long-distance quantum communication [8–
10], linear-optics quantum computing [11], and schemes
aimed at breaking quantum encryption [12], or convert
probabilistic [2,13,14] into heralded entanglement.

A continuous-variable quantum receiver has been real-
ized by Julsgaard et al. [3] who mapped a weak coherent
electromagnetic field containing up to eight photons onto
the collective spin of an atomic ensemble with a fidelity of
F ¼ 0:67 after 0.7 ms of storage. Recently, squeezed
vacuum has been stored in and retrieved from an atomic
ensemble [15], and a weak coherent state has been stored in
a single atom [5].

Work with quantized excitations demonstrated capture
and release of a single photon of fixed polarization [16,17]
and coherent adiabatic transfer of a single photon between
two ensembles via an optical resonator [18]. Matsukevich
and Kuzmich [1] first introduced two ensembles, each
capable of storing a single photon of fixed polarization,
as a two-state system that can be mapped onto a single
photon of variable polarization [19]. The two states can

also be implemented as momentum states of the stored spin
wave [2] or, as in the present work, using atoms in two
different magnetic sublevels. The latter allows the direct
mapping of the spin polarization onto a single spatial mode
of an optical resonator.
The first system capable of functioning as a quantum

memory was realized by Choi et al., who mapped the
polarization state of an incoming photon onto two ensem-
bles, and later retrieved the photon [6]. This (unheralded)
device was tested for a single input polarization, for which
it achieved a fringe visibility of 0.91 at a photon retrieval
probability of 0.17 and a lifetime of 8 !s. A recent tele-
portation experiment by Chen et al. can also be viewed as a
quantum memory, where the polarization state of an in-
coming photon is erased in a two-photon measurement,
and teleported with probability between 17% and 95%
onto two atomic ensembles [7] at polarization fidelities
F between 0.74 and 0.87. If this experiment were per-
formed with a single input photon, heralded storage would
occur with a probability of "10#4.
In this Letter, we demonstrate a heralded quantum mem-

ory where a single photon announces polarization storage
in the form of a single collective-spin excitation (magnon)
that is shared between two spatially overlapped atomic
ensembles. The heralded storage occurs rarely (h $ 10#6

per photon in our nonoptimized setup), but when it does,
the stored photon can later be recreated with good effi-
ciency (" $ 0:5) and sub-Poissonian statistics (g2 ¼ 0:24),
while its polarization state is restored with very high
fidelity (F > 0:9). In the absence of a second setup for
the production of narrowband single photons [13,17,20],
we test the quantum memory with coherent states of arbi-
trary polarization (containing typically 500 photons per
pulse to improve the data collection rate). The scheme,
however, is designed for single-quantum storage and stores
only one photon even for coherent input beams [8,21].
Heralded storage is achieved by means of a spontaneous

Raman process that simultaneously creates the herald and
the magnon. To store an arbitrary polarization state
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jc i ¼ cos!jRiþ ei" sin!jLi; (1)

written as a superpositions of right (left) circularly polar-
ized states jRi (jLi) with two arbitrary angles !, ", we use
two spatially overlapped atomic ensembles A, B inside an
optical resonator. The atomic levels are chosen such that
ensemble A (B) absorbs only jRi (jLi) polarized light,
while both can emit a photon of the same polarization
(#) into the resonator on the Raman transition of interest
[Fig. 1]. The detection of the emitted # photon heralds the
mapping of the input polarization state onto a magnon, but
does not provide ‘‘which-path’’ information to distinguish
between A and B. The ‘‘write’’ process thus maps a polar-
ization state jc i onto a magnon superposition state

jc i ! j!i ¼ cos!j1iAj0iB þ ei" sin!j0iAj1iB; (2)

where jnik denotes n magnons in ensemble k (k ¼ A, B).
At a later time, the stored state can be retrieved on demand
as a single photon by utilizing the strong coupling of the
magnon to the resonator [8,21] (‘‘read’’ process).

The heralding serves to enhance the fidelity of the write
process by announcing successful events. In our present
nonoptimized setup, the heralding probability per incom-
ing photon is h ¼ $%q # 10$6, where $ ¼ 0:01 is the
absorption probability, % ¼ 10$3 is the single atom coop-
erativity (the emission probability into the resonator in this
case), and q ¼ 0:1 is the photon detection efficiency.
Whenever there is a heralding event, however, a single
magnon corresponding to the input-field polarization is
stored with high fidelity and can be retrieved with good
efficiency. The single-photon nature of the retrieved field is
confirmed by a conditional autocorrelation measurement
indicating sub-Poissonian statistics [g2 ¼ 0:24ð5Þ< 1].
The heralding process may thus be viewed as a quantum
nondemolition measurement where a single photon is de-
tected and stored while preserving its polarization.

The quantum memory uses precessing spins [22] in
order to take advantage of resonator emission in both
heralding and read processes, and of atomic symmetries;
the former provides mode selection and high photon
collection efficiency and the latter good polarization fidel-
ity. We choose a # transition for heralding, while any input
state is expressed as a superposition of &' polarizations
[Fig. 1(b)]. Given the corresponding atomic angular emis-
sion patterns, we then need to rotate the atomic-spin di-
rection by 90( between the heralding and the readout.
This is achieved with a magnetic field of )1:4 G that
induces Larmor spin precession with a period of 'L ¼
2 (s [Fig. 1(a) and 1(c)], enabling us to access the same
magnon with different light polarizations at different times.
Note that a spatially homogeneous magnetic field main-
tains the interatomic coherence and does not affect the
magnon momentum, or equivalently, the phase matching
condition for the read process [23].

We load cesium atoms from a magneto-optical
trap into a far-detuned (trap wavelength )t ¼ 1064 nm)
one-dimensional optical lattice overlapped with

the mode of a medium-finesse (f ¼ 140) optical reso-
nator [21]. Ensembles A and B consist of approximately
8000 atoms each at a temperature of 30 (K, optically
pumped into hyperfine and magnetic sublevels jg'i *
j6S1=2, F ¼ 3, mF ¼ '3i, respectively, in the rotating
frame. (The quantization axis is defined to rotate with the
atomic spins and coincide with the propagation direction of
the write beam at the optical-pumping time top ¼ 0.)
Optical pumping is achieved by periodic application of a
short (100 ns + 'L), linearly (x̂-) polarized optical-
pumping pulse, resonant with the 6S1=2, F ¼ 3 ! 6P3=2,
F0 ¼ 2 transition. The ensembles A, B thus form macro-
scopic spins in opposite directions that Larmor precess in
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FIG. 1 (color online). (a) Setup. The small arrows indicate
beam polarizations. OP is the optical pumping beam. NPBS,
PBS, QWP, and HWP denote a nonpolarizing beam splitter, a
polarizing beam splitter, a quarter wave plate, and a half wave
plate, respectively. D1, D2, D3 are single-photon counting
modules for herald detection and polarization analysis. A static
magnetic field induces magnon precession. (b) Energy levels.
Ensembles A and B are initially prepared in jg,i *
jF ¼ 3, mF ¼ ,3i. The write (green) and the read (red) pro-
cesses are &'-# and #-&' spontaneous Raman transitions,
respectively. (c) Precession of the two macroscopic spins, as
measured via cavity transmission, and timing of the optical-
pumping (top), write (tw), and read (tr) processes.
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the x-z plane with a period !L [Fig. 1(c)]. We choose a
pumping period of !op ¼ 3!L=2 ¼ 3 "s, such that the
ensembles are interchanged at every trial, which reduces
population imbalance between jg"i.

The atomic-spin precession and the efficiency of the
optical pumping are monitored via resonator transmission
of a weak, linearly (x̂-) polarized beam. In the frame
rotating with the atomic spin, the probe beam polarization,
and thus the coupling to the polarized atoms, change
periodically with time. Since the states jg"i do not couple
to #-polarized light on the chosen transition F ¼ 3 !
F0 ¼ 2 [see Fig. 1(c)], the otherwise observable atom-
induced splitting of the cavity resonance [24] disap-
pears. By optimizing the sinusoidal variation of the split-
ting [Fig. 1(c)], we prepare more than 99% of the F ¼ 3
population in either of the jg"i sublevels.

The photon storage and readout processes are timed to
match the sample precession [Fig. 1(c)]. A sequence of
optical-pump, write, and read pulses is applied once every
!op for 30 ms, corresponding to a total of 104 trials before
the sample is recooled.

The light whose polarization state is to be stored (write
beam) is tuned to the F ¼ 3 ! F0 ¼ 2 atomic transition,
propagates along the x̂ direction, and is pulsed on for
50 ns # !L at tw ¼ !L=2 ¼ 1 "s, when the macroscopic
spins are aligned along $x̂. At this time, ensembles A and
B can absorb only jRið$þÞ and jLið$(Þ photons, respec-
tively [Fig. 1(b)]. For equal populations in A and B, a
#-polarized photon originating from a spontaneous
$"-# (absorbing a $" photon and emitting a # photon)
Raman process has the same probability for having been
emitted by either ensemble. Thus, it does not provide any
‘‘which-path’’ information, and, if detected by detector D1
[Fig. 1(a)], serves as a herald that announces the storage of
a (not revealed) polarization state jc i as a magnon j!i.

At tr ¼ tw þ !L=4 ¼ 1:5 "s, when the atomic spins
point along the resonator axis "ẑ, the ẑ-polarized read
beam, tuned to the F ¼ 3 ! F0 ¼ 2 transition, is applied
for 100 ns # !L. The read beam addresses a # transition,
such that collectively enhanced [8] #-$" Raman scatter-
ing maps the magnon state onto a single-photon polariza-
tion state. If the populations, j cos%j2, j sin%j2, and the
relative phase & of the magnons in ensembles A, B are
preserved between the write and read processes [Eq. (2)],
the polarization of the regenerated single photon is a
faithful copy of the write beam polarization.

To quantify the performance of the heralded memory,
we determine the density matrix 'meas of the output polar-
ization [examples are shown in Fig. 2(a)] by measurements
in three polarization bases [25]: 1ffiffi

2
p ðjLi" jRiÞ (H-V), jLi

and jRi (L-R), and 1ffiffi
2

p ðjLi" ijRiÞ (S-T). The polarization
fidelities F of the retrieved single photons for ten states of
varying angle % [Fig. 3] as well as for the six fiducial input
states, H, V, L, R, S, and T [Fig. 2], are evaluated as F ¼
Trð'measjc ihc jÞ, where jc i is the input state in Eq. (1).
Figure 3 shows that F is close to unity with no systematic

dependence on the zenith angle %, and we have verified
separately that the same is true for the azimuth angle &.
For any of the six fiducial states, the measured fidelity F
without any background subtraction is significantly above
the classical limit of 2=3 for state-independent storage
[Fig. 2(b)]. [The larger fluctuation of the fidelities in
Fig. 3 (measured over )8 hours) relative to Fig. 2(b)
(measured over )1 hour) is due to a slow uncompensated
magnetic field drift.] If we correct the fidelities presented
in Fig. 2(b) for the effect of the independently measured
photon backgrounds, all fidelities are unity within statisti-
cal errors of a few percent.
The major source of photon backgrounds is the finite

Larmor precession of 0.3 rad during the 100-ns read pro-
cess. The read pump beam acquires a small admixture of
$" components in the frame precessing with the atomic
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FIG. 3 (color online). Polarization fidelity of the stored photon
as a function of % for & ¼ 0 [Eq. (1)]. Insets (i)–(iii): The results
of projection measurements of the output field in three mutually
orthogonal bases, H-V, L-R, and S-T. The solid curves are a
simultaneous fit for all 60 data points. No backgrounds have
been subtracted.
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FIG. 2 (color online). (a) Density matrices 'meas of the re-
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(F ) of the retrieved single photons.

PRL 103, 043601 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
24 JULY 2009

043601-3



Chapter 8: Heralded Polarization Preserving Quantum Memory 190

spin [Fig. 1(b)], which results in strong resonator emission
by atoms in jg!i. These backgrounds deteriorate not only
the stored polarization, but also the single-photon character
of the retrieved field. The predicted autocorrelation due to
this effect is g2 " 0:2, in good agreement with the mea-
sured value of g2 ¼ 0:24ð5Þ. These backgrounds can be
reduced by slowing down the Larmor precession, which
requires an increase in the memory lifetime which is
currently &3 !s. With a lifetime of a few milliseconds
as demonstrated recently [26], the autocorrelation will then
be g2 & 0:02, limited only by the rare storage of two pho-
tons. The current lifetime is set by the magnon Doppler
decoherence [21] that is presently faster than polarization
(spin) decoherence. The one-dimensional optical lattice in
the setup does not confine the atoms along the direction of
momentum transfer in the write process [21], and thus an
additional lattice is required for long lifetime.

Finally, we discuss the performance limits for the her-
alded quantum memory scheme investigated here. The
success probability may be improved upon by adding a
second resonator to increase the absorption probability of
the incident photon. The fundamental limit for the herald-
ing probability h for N ' 1 would then be given by h ¼
"

1þ" q. Under realistic conditions (N ¼ 100, " ¼ 10, q ¼
0:6), one could thus achieve h& 0:5 for an incident single
photon with retrieval efficiencies near 90% [21]. With a
lifetime of &6 ms [26], Larmor precession and spin deco-
herence would limit the polarization fidelity only at the
10)3 level.

By applying this scheme to photons of undetermined
polarization from a probabilistic source of entangled
photon-magnon pairs [2,13,14], it should be possible to
realize a heralded source of entangled-photon pairs for
various tasks in quantum information processing. If loaded
by a photon from a high-purity Bell pair, the estimated Bell
parameter for the heralded source employing our current
quantum memory would be 2:5ð1Þ> 2, exceeding the clas-
sical limit. For the above improved parameters, such a
source would then produce heralded Bell pairs at a rate
of &500 s)1.
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Chapter 9

Hybrid EIT/Cavity QED

Apparatus

9.1 Motivation

All of the work described thus far has made use of the collective coupling of an

atomic ensemble to an optical resonator to reach the strong-coupling regime. The

primary limitation of such an approach is that devices so created are inherently lin-

ear [127], insofar as they cannot distinguish between one photon (or magnon) and two.

All of our experiments have used a projective measurement with an SPCM (which

is not a linear device) to prepare the system in the single excitation manifold, after

which the linear evolution provided by ensemble-cavity coupling is enough to generate

the interactions we desire.

In light of our growing desire to observe quantum nonlinear e↵ects, we decided

to implement a cavity appropriate for entering the single-atom strong-coupling limit.

191
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The apparatus we have built was designed for one objective, and finds itself ideally

suited to attack an even more exciting secondary problem. The former was to generate

controlled coupling between at least two atoms in a single high-finesse cavity. We have

since discovered that using EIT and CQED together, there is hope to create very high

e�ciency QND single photon detectors, and at a minimum an e�cient single photon

detector and a single-photon gated transistor.

9.1.1 Two Atoms in a Cavity

Previous work with single optical cavity QED has found great success in fields

from single atom detection[9] to single non-linearities[5, 82], to cavity cooling[80,

65] and beyond. The cost of this work has been the remarkable e↵ort required to

transport, load, and manipulate single atoms. Cavity systems su�ciently sensitive

to distinguish between 1 and 2 atoms have been realized [43, 60, 61, 96], and single

atom positioning of up to 6 atoms has even been realized outside of a cavity[84].

Recently, the Rempe group has succeeded in resolving (via imaging) two atoms within

a cavity[122]. To date, however, no one has succeeded in deterministically loading,

individually addressing and coherently manipulating two atoms within a cavity. From

the prospective of QIP, this is a very important objective[88, 131].

The groups of Grangier and Weinfurter have had impressive success localizing

single atoms at the waist of tightly focused dipole traps[123, 103] The volume of

these traps is so small that two atoms held in the trap are likely to collide and

be ejected on a time-scale short compared with the one-body loss. This results in

strongly squeezed trapped number atom distribution, with an achievable mean atom
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number of 0.5 and undetectable 2-atom probability. These traps thus provide single

atoms with less technical complexity, at rates comparable to standard techniques for

loading single atoms within an optical resonator. Rydberg blockade in the excitation

of two such atoms has begun to show promise as a route to quantum gates[45].

Our objective is to combine the e�cient readout and control of a high-finesse

cavity with the deterministic loading and addressing of a pair of very small waist

dipole traps. This will allow us to deterministically load two atoms in very controlled

locations within the cavity field, and induce cavity mediated interactions.

9.1.2 Single Photon Transistors and Detectors

There are numerous applications for high-e�ciency single photon detectors from

linear optics quantum computing [63], to loophole-free tests of Bell inequalities[102],

to increased range between quantum repeaters[34], and beyond.

There exist proposals for very high e�ciency detectors, from James et al.[57] and

Imamoglu[56]. These detectors use an atomic ensemble optically pumped to a state

|Gi to adiabatically stop an incident photon by transferring a single atom to an

intermediate ground state |F i, and then fluorescence scattering on a closed transition

to detect the atom in |F i. If such a detector could be built, single photon detection

e�ciencies up of 99% within a time interval of a few ��1 ⇡ 100ns, would be within

reach. The problem is that such schemes depend upon large detection solid angle (for

e�cient detection of a single transferred atom) over a large atomic sample (to achieve

e�cient stopping of the incident photon).

Our new apparatus has the potential to solve the above limitations by using an
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atomic ensemble trapped within a high-finesse resonator to detect a single transferred

atom by its e↵ect on cavity transmission. Adiabatic capture of a single photon will

be performed by addressing the atomic ensemble from the side of the optical cavity,

using the high-NA lens to focus the incident single photon down into a 2µm waist,

thus minimizing the necessary number of atoms.

Because cavity-based atom detection is in principle non-destructive (in the ⌘ � 1

limit where free-space scattering may be ignored), and does not distinguish between

the various atoms, the stopped photon can be restarted by re-application of the

stopping laser! This is because the stopping process[89] essentially writes a free-space

magnon into the atomic ensemble, and so as long as the atoms do not scatter any

photons into free-space during the cavity probing, the detection of the transferred

atom will not destroy the magnon.

The ability to detect a photon without destroying it, known as a quantum non-

destructive or QND measurement, has both fundamental and practical implications.

An optical QND photon detector could be used to implement a quantum gate[112].

Additionally, the switching of cavity transmission by a single photon may be

viewed as a single-photon transistor. In the absence of impedance matching issues,

this switch would have the potential to act as a quantum non-destructive single-

photon transistor, which is a quantum gate.

9.2 A Long, High Finesse Cavity?

The primary limitation that we face is technical in nature. Over the long history of

optical Fabry-Perot cavity QED, there has been a continuous push to resonators with
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smaller volumes and higher finesses. This push arose from the conventional wisdom

that while a single atom switch requires only g2 > �, single photon nonlinearities

require g > �. To reach this latter limit requires a high finesse, a small waist, and

a short cavity! The problem, then, was that we needed a lot of optical access to

generate a 2µm dipole-trap focal spot within the cavity, and get in MOT beams of

2mm diameter. Typical cavity lengths of 10 � 50µm[5] would not provide nearly the

necessary optical access. We then had to face the question: Could we get away with

moving to a longer cavity design from the short design which seemed to be preferred

for most Cavity QED experiments, or, put another way, do we need g > ,�, or

simply g2 > �?

Our first hint that we might be alright was that for each of the schemes described

in this thesis, the e�ciency scaled with a power of ⌘ ⌘ 4g2

� , and not g
 or g

� inde-

pendently1. Noting that ⌘ = 4g2

� = 24F
⇡

1
(kw

c

)2 , it is clear that as long as the finesse

and cavity waist remain fixed, the cavity length may be varied arbitrarily without

a↵ecting ⌘. A longer cavity would leave space for a MOT within the cavity, as well

as the small waist dipole trap.

There are, admittedly, a number of other applications for which one might like

to use a cavity, other than those that we know scale with ⌘. Among them are single

atom detection, photon blockade, vacuum Rabi spectroscopy, etc. . . Some of these

processes obviously scale with ⌘, and some do not. We will see in (9.7) that single

atom detection has a rate which scales with ⌘ and �, otherwise independent of the

cavity length. I will show, in the next section, that given a 3-level ⇤ atom, the third

1Of course all of our work made use of atomic ensembles, and so g !
p

Ng, but our analyses
applied equally well to single atom e↵ects.
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level may be used to engineer an appropriately narrow excited state such that any

scheme which would normally utilize a two-level atom in a cavity will scale with a

power of ⌘, as long as � > . In the opposite limit of ultrashort cavities  > �, this

method fails, and the fundamental scaling is less clear.

Thereafter, I will describe a new apparatus, built during the final year and a half

of my PhD, which reaches the strong-coupling limit between single atoms and a long,

high-finesse Fabry-Perot cavity. I will discuss di�culties faced and surmounted arising

from the narrow linewidth of the long cavity, and finally, I will describe a number of

interesting applications of this new apparatus, with some preliminary data.

9.3 The ⌘ Limit

In the preceding chapters we have discussed in excruciating detail why it is that ⌘

sets the limit for single photon sources, quantum memories, and quantum buses. The

qualitative explanation, backed up by math in a number of limiting cases, is that ⌘

is essentially the single pass absorption probability of a single atom, times the mean

number of passes through the cavity mode.

This is a convincing argument, and for all of the things we have tried to do, it

holds water. Problems begin to appear when we analyze the vacuum Rabi spectrum

of a single atom (or ensemble!) coupled to a single cavity mode [130, 9]. Without

even doing much calculating, it is easy to show that the doublet splitting in the first

excited manifold of the Jaynes-Cumming Hamiltonian is 2g[9], and each dressed level

has a linewidth of +�
2 . This means that our spectroscopic resolution (where larger is
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better) is:

R =
4g

+ �
=

2
p
⌘

p


� +

p


�

�1 (9.1)

which depends upon the ratio of 
� , and not just ⌘!

Similarly, an analysis of the the photon blockade[5] shows that the zero-time au-

tocorrelation function (which parameterizes the degree of blockading of the cavity by

a single atom) is given by[11]:

g2(⌧ = 0) ⇡ 9(+ �)2

4g2
= 9

(
p


� +

p


�

�1
)2

⌘
(9.2)

and again we see explicit dependence on 
� .

How do we reconcile this with our intuition? The answer is that, for a two-

level atom, we cannot: There seem to be a class of problems in which the mismatch

between the cavity and atomic linewidths substantially degrades the performance of

the system!

For a three-level atom, however, the situation is quite di↵erent. Using a detuned

dressing laser, a narrow excited state may be custom-built with an arbitrary linewidth

�̃ arising from an controllable admixture of the excited state induced by the dressing

beam.

9.3.1 Engineering an Arbitrarily Narrow Excited State

Suppose our cavity is tuned near the |Gi $ |Ei transition, with the |F i $ |Ei

transition dressed with a laser of Rabi frequency ⌦ at a detuning � from the excited

state, as shown in figure (9.1). If ⌦ ⌧ �, this laser builds two new states,
�

�

�

Ẽ
E

and
�

�

�

F̃
E

, where the important state
�

�

�

F̃
E

⇡ |F i + ⌦
2� |Ei This state is stark shifted
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|F,0

|E,0

|G,1

δ la

Ω

Γ

κ

2g

ΓΩ
2Δ( )

2

|G,1
κ

2g Ω
2Δ

a) b)

Figure 9.1: Engineering a narrow excited state using EIT in a 3-level atom. (a) The
3-level scheme, using the pump beam ⌦ to dress the state |F i, thus introducing a
small admixture of the state |Ei. (b) E↵ective two-level scheme, showing a narrowed
excited state and a reduced atom cavity coupling, such that ⌘̃ = ⌘, but �̃ ⌧ �.

downwards by �s = ⌦2

4� , and has a linewidth of �̃ = ⌦2

4�2 �. Because the excited state

component is only ⌦
2� , the e↵ective vacuum Rabi coupling between this state and the

cavity is 2g̃ = 2g ⌦
2� . As such we see that when the cavity is tuned to

�

�

�

F̃
E

, the e↵ective

⌘ is ⌘̃ = 4g̃2

�̃
= 4g̃2

�̃
= ⌘, that is, ⌘ is una↵ected by the dressing process. Quantities

like �̃
 , however, may now be adjusted freely between 0, and �

 , simply by tuning ⌦
2� !

What this means is that vacuum Rabi splitting resolution can be tuned to its

optimal value Rmax =
p
⌘, and similarly the photon blockade autocorrelation may be

optimized to gopt2 (⌧ = 0) ⇡ 36
⌘ . We have saved the day– everything scales with ⌘ only!

While we are mostly interested in situations where this explicit construction of a

narrow level is unnecessary, it certainly good to know that this exists as a possibility

for our apparatus, and the many other apparatuses that have ⌘ � 1 but  ⌧ � and
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would like to be able to access the full range of quantum mechanical phenomena!

9.4 Design of the New Apparatus

The new apparatus is shown in figure (9.2). Our top priorities was to squeeze

a MOT, strong-coupling cavity, and two optical dipole traps with 2µm waist into

the same volume. We wanted as large a cavity linewidth as possible, which meant

making the cavity as short as we could without compromising the MOT beams. Two

of the MOT beams entered along the diagonals, between cavity mirrors and dipole

trap lenses, while the third entered through a hole in the baseplate.

For simplicity it was decided that the new cavity setup ought to be a�xed to

the same stainless steel rods as the old one. The old setup had serious vibration

problems, which were suppressed to an extent in the new apparatus by mounting the

full apparatus on a single Macor2 block which slid onto the steel rods and was fixed

in place with steel rings locked in place with set-screws.

9.4.1 Mechanical Design and Assembly of the Cavity

The cavity mirrors were each mounted to a tube piezo from Channel Industries,

made of Navy II (5500), with OD 0.314”, length 0.500”, and thickness 0.03”, making

it slightly smaller in OD than the mirrors themselves. This made the task of centering

the mirrors on the piezos quite tedious, and in the end one of the mirrors was aligned

2Macor is a vacuum compatible, “machinable” ceramic. Machining it cleanly is apparently quite
di�cult as it is prone to crumble. Even the external shop we used had serious trouble threading
holes into the Macor, and so in the end none of the threaded holes in the Macor were even used.
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Figure 9.2: Photograph of the new apparatus. The hole in the Macor plate is for the
horizontal MOT beams. The diagonal MOT beams pass between the cavity mirrors
and the dipole trap lenses. Each cavity mirror is wrapped in 34AWG Kapton-coated
heating wire, to prevent Cs deposition on the mirror surfaces. One of the 40mm
mode-matching lenses is visible at the far-right of the image.
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by insisting that the TEM00 mode be centered upon it, and that the incident beam

be retro-reflected by the mirror-surface.

The piezo tubes were glued with ND-353 to (non-magnetic) steel mounting blocks,

which were then a�xed to the Macor block from below with slot-vented, silver plated

4-40 screws from UC components. One of the mounting blocks was elevated by ⇠

11mils to compensate for o↵-centered mounting of mirror on the Piezo. The elevation

was generate with a carefully flattened and cleaned copper wire placed between the

steel mounting block and the Macor block.

The piezo wires were 34AWG, Kapton-dipped copper wires from Allectra, and we

had substantial di�culty soldering them to the piezos. This seemed to be because the

piezos were quite old, and so there was a substantial oxidation layer built up on their

surfaces. Once the piezo wires were soldered to the piezo’s they were secured with

ND-353 to the steel blocks for strain relief. Unfortunately the inner piezo wire for one

of the piezos came loose in this process3- everything was already aligned, however, so

we proceeded onwards, leaving one of the piezos floating.

The piezos were chosen to have approximately 800nm throw with 250V applied,

corresponding to approximately two cavity FSRs at 852nm. We have found nearly

1.6µm throw, possibly resulting from the exposure of the piezos high-temperatures

during glue curing and chamber bake-out.

3We attempted to attach the piezo wires more firmly to one of the piezos with ND353. The large
quantity of ND353 necessary actually shattered the piezo: Curing ND-353 requires heating it past
its glass transition, near 100�C. When it cools, the di↵erential contraction between the extremely

sti↵ ND353 and the piezo was enough to shatter the piezo. In the end we just soldered the wires to
the piezos and took our chances.
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9.4.2 Cavity Characteristics

The mirrors used were 0.3” diameter, 4mm thick substrates with radius of cur-

vature 1cm, from REO. These mirrors have an intrinsic power loss of L = 26 ppm,

and using the method described below were found to have a finesse of approximately

63(5)⇥103 at 852nm. This corresponds to a power transmission of T = 26ppm. This

would mean that we expect an intra-cavity photon to be out-coupled with a proba-

bility P = T
T +L ⇡ 0.5, or 0.25 through each mirror assuming equal transmissions.

In general we have found it to be easier to align the input beam to the TEM00

mode and perform the initial mode matching using 780nm light, because the cavity

finesse at this wavelength was only⇠ 5000, as compared with 852 or 817nm, where

the finesse was ⇠ 60000. Working at 937nm, where the finesse was ⇠ 300 would have

been even easier- at the time we did not yet have an available laser at 937nm.

The cavity length was chosen to be 13.7 mm. If the cavity had been made shorter,

we expected the MOT beams to be clipped by the cavity mirrors– as it was the edges

of the vacuum chamber windows, and the edges of the dipole lenses, were expected

to limit their size. Increasing the cavity length further would have made the mode

larger on the mirrors, and increased the likelihood that dust-particle would land in

the mode and spoil the cavity finesse4.

The cavity length of 13.7mm corresponds to a free-spectral range of 10909MHz,

4We initially investigated the possibility of going to a near-concentric cavity, but found ourselves
limited to a finesse of 6000 at a waist size of 5µm. We would then have been loss dominated, making
cavity out-coupling very di�cult. Additionally, concentric cavities are notoriously di�cult to keep
aligned, typically require in-vacuum adjustment[51], and so we chose to forgo this possibility for
now. It was tantalizing, however, as F ⇡ 6000 and w

c

⇡ 5µm correspond to a peak cooperativity
⌘ ⇡ 55. In retrospect it is good that we did not go in this direction, as we are now trying to pack
as many atoms as possible into the cavity waist in an e↵ort to increase our absorption probability
from the side.
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which, in fact, is how we measured the cavity length. At 852nm we can measure

the cavity length to better than 50KHz, corresponding to an uncertainty in absolute

cavity length of only 62nm! Our most precise measurement of the cavity length

puts it at 13742592(25)nm, for the longitudinal mode which we like to use for our

experiments!

At this cavity length and for the known mirror curvatures of 1cm, we anticipate

a transverse mode spacing(to the TEM10 mode) of 4123MHz� , and a waist size

of a cavity waist size of 35.2µm. Using these numbers we performed mode matching

calculations using ABCD matrices , and concluded that a 40mm EFL plano-convex

singlet lens at a distance of 31.55mm from the cavity mirror back surface would

collimate the TEM00 mode out-coupled from the cavity to a beam with a waist size

of 420µm. This beam was mode matched to an OZ-Optics single mode fiber via a

C-340TMB 4mm EFL aspherical collimating lens from Thorlabs. The 40mm EFL

mode matching lenses were glued in stainless steel mounting blocks, which were then

a�xed to the Macor block with screws.

9.4.3 Cavity Linewidth Characterization

One of the challenging aspects of working with a cavity with such a narrow

linewidth is characterizing it. At a linewidth of  = 2⇡ ⇥ 173(13)KHz, the cavity

was substantially narrower than any of the lasers available in lab5 In our old setup

with  ⇡ 2⇡ ⇥ 10 � 15MHz, the cavity linewidth was most easily characterized by

putting ⇠ 30MHz sidebands on a laser and sweeping it across the cavity resonance

5This obviously eventually changed with active laser frequency stabilization, but that took time.
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while monitoring the cavity transmission. The sidebands act as a calibrated ruler for

a measurement of the observed cavity line of  + �laser. As long as �laser ⌧ , the

observed linewidth reflects . Clearly, in the limit  ⌧ �laser, this technique fails.

Once the cavity is locked, the simplest (and likely most accurate way) to measure

the cavity linewidth is via the “ringdown” method: We inject a small amount of power

into the cavity and allow it to reach steady state, and then turn o↵ the incident beam

and monitor the cavity leakage on a fast photodiode. The intracavity power will

decay with an envelope e�t, giving a direct indicator of , independent of probing

laser linewidth. While we ultimately measured our cavity linewidth this way, it is not

a terribly useful technique until the cavity is stably locked.

The technique described by Poirson et al.[90] proved to be quite useful. By sweep-

ing the cavity resonance (via the cavity piezo) rapidly across the laser line and mon-

itoring the cavity transmission, we acquired curves akin to figure (9.3). From a fit

to this data, both the cavity sweep rate and cavity finesse may be extracted. This

method works quite similarly to the “Ringdown” method, in that it is not biased

by laser linewidth. Use of a 1MHz bandwidth high transimpedance gain (⇠ 100k⌦)

avalanche photodiode(M ⇠ 30) was helpful for observing the signal. We found that

the full fit form from [90] was not really necessary, and that the approximate expres-

sion provided was su�cient:



2⇡
=

1

2⇡

R + 2 � e

2�t
(9.3)

Where R is the ratio of the height of the first peak to the second, and �t is the

time between the first peak, and the second.

The mirrors were cleaned with a combination of Opti-Clean and then acetone on
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�4.⇥10�6 �2.⇥10�6 2.⇥10�6 4.⇥10�6

0.1

0.2

0.3

Figure 9.3: Sample swept cavity ringdown curve measured at 852nm, corresponding
to a finesse of 50000.

tightly folded sheets of lens paper. Following the bake, we measured the following

finesses:

� F
937nm 330(10)
852nm 63(4) ⇥ 103

817nm 50 ⇥ 103

780nm 5 ⇥ 103

Combining the finesse at � = 852nm of 63000, and a waist of wc = 35µm, we

anticipate a peak single atom cooperativity of ⌘ = 7.2 > 1, so we are in regime of

single-atom strong coupling!
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9.4.4 Mirror Heating Coils

To avoid Cs deposition on the mirror surfaces, each mirror is heated with 10

turns of 34AWG Kapton-dipped wire from Accu-Glass, with approximately .4Amps

of current running through it, providing an anticipated 30�C heating, assuming good

thermal grounding of the heating-wire to the mirror surface.

10 turns of wire, all in the same direction, wrapped around the mirror, would

generate a field of 3.6Gauss/Amp at the location of the atoms. To avoid this, each

heating element consists of 5 clock-wise turns, and 5 counter-clockwise turns. We

nonetheless observe a residual field of 0.4G/A, and as such whenever the heating coil

current is adjusted the MOT bias coils must be accordingly compensated to recenter

the MOT.

9.4.5 Mechanical Design of the Dipole Traps

The 2µm dipole traps were generated from 11mm EFL A397-B unmounted as-

pheric collimator lenses from THORLABS, mounted in stainless steel blocks on either

side of the cavity mode. We were very concerned about having enough optical access

to get MOT beams through the cavity, so we chose the longest focal length asphere

that fit into a 7.2mm diameter package, with which we could consistently produce a

wtrap = 2µm focal spot.

Alignment of the aspheric lens focal spot to the cavity waist proved to be a very

di�cult task, largely because locating the center of the cavity mode was quite di�cult.

Any object placed within approximately 60µm of the cavity axis spoils the cavity

finesse at 852nm and extinguishes cavity transmission. The field of view of the asphere
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for a nearly collimated gaussian beam seems to be ⇠ 60 microns in each of x̂,ŷ, and

ẑ, before spherical aberration increased the size of the beam waist. In addition, once

the vacuum chamber was closed we were concerned that it could be quite di�cult to

move the focus of the small-waist dipole trap into the cavity mode.

Using a combination of razor blades and small (100 � 150µm) apertures, and

working at 780nm, Haruka managed to align the focus of each of the two aspheres

onto the cavity axis to within ±5µm. The foci are separated along the cavity axis

by approximately 80µm. This procedure was quite involved, and will be explained in

greater detail in the thesis of Haruka Tanji.

9.5 Locking the Cavity

9.5.1 Motivation

We have, to an extent, laid to rest concerns that long cavities with g < � cannot

not induce single-photon nonlinearities. That, however, is not the sole argument

against the use of long cavities. The other big concern is that such cavities are very

di�cult to stabilize- both absolutely, and relative to lasers.

A cavity of finesse F must have length fluctuations suppressed to better than �
F

for its linewidth can be resolved by a stable laser. This would seem to indicate that

longer cavities are no more di�cult to work with than shorter ones, but there are

several reasons why this is not the case. The first is that the displacement induced by

given noise source is likely to be proportionately larger for a longer cavity, and so more

gain is required to achieve the requisite stability. The second is that a longer cavity is
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likely to be less sti↵ and couple to more mechanical resonances at lower frequencies,

making the control loop more complicated. The third is that longer cavities have

proportionately smaller linewidths, so standard diode lasers are too broad to address

the cavity resonance.

For our old experiment we locked our cavity on a longitudinal mode separated from

the Cs D2 line by several cavity FSRs, up to about 9GHz. During the experimental

sequence we held the lock, extinguishing the locking light, to avoid saturating the

detectors or perturbing the atoms. For this to be alright we depended upon the

mechanical stability of the cavity (to better than �
F ) over the few milliseconds of

data collection. In practice this worked fine for the finesses we used, up to ⇠ 400.

While the new apparatus is somewhat more rigid and the cavity shorter, the finesse

of ⇠ 60000 is a factor of at least 150 larger, and so we do not expect to be able to

hold the cavity very long at all before it drifts o↵ of resonance.

Equally importantly, our cavity linewidth of  ⇡ 2⇡ ⇥ 160kHz is substantially

smaller than the linewidth of our DFB lasers �dfb ⇡ 2⇡ ⇥ 1MHz. The simplest way

to deal with this is to actively narrow the laser against the experimental cavity, but

even this would not work since any near-resonant locking light must be extinguished

the experimental cycle. We considered optically narrowing the laser, and then locking

the cavity to it, hoping all the while that during the experiment neither the narrowed

laser, nor the cavity, would drift too far. While this seemed a marginal solution, we

hoped for something better.
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9.5.2 A Transfer Cavity: Overview

The more robust and unfortunately more complicated solution upon which we

finally settled was a transfer cavity, which allows us to lock the experimental cavity

at one frequency, and probe it at another, transferring the frequency stability across a

very large frequency range otherwise accessible only by frequency comb. As shown in

figure (9.4), we built a transfer cavity whose length and finesse were quite similar to

the one installed in the chamber, but whose mechanical stability and noise immunity

were much improved via geometry and teflon isolation rods[73]. The transfer cavity

has a free-spectral range of 11257MHz.

Two lasers were narrowed and locked to this cavity, one at 852nm (henceforth

the ⌘ laser), and one at the edge of the wavelength-region where the cavity finesse

remained high, at 817nm (the transfer laser). We actively stabilized (via a piezo) the

length of the transfer cavity at very low frequencies ! < 2⇡ ⇥ 100Hz by monitoring

the beat signal between the ⌘ laser and the reference laser. The experimental cavity

was then locked (via piezo) to the transfer laser, which was far enough detuned from

any atomic resonance that its intracavity power hardly impacted the atoms at all.

The wavelength di↵erence of ⇠ 35nm allowed for e�cient filtering using interference

filters from Omega Optical, such that the transmitted locking power did not disturb

the photodetectors monitoring the cavity transmission.

The ⌘ laser could then be used to probe the cavity. Because the transfer laser

does not perturb the atoms or the detectors, it could be left on during the exper-

imental sequence. The narrowing of the lasers to the transfer cavity ensured that

their linewidths were smaller than the linewidth of the experimental cavity. The full
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Figure 9.4: Transfer Cavity. (a) Schematic of the transfer cavity setup. The mirrors
are the same high-finesse super-mirrors used in the experimental cavity, but with
radius of curvature is R= 2.5cm. They are shown in blue, the piezo (and symmetri-
cal stando↵) in orange, and the high-symmetry aluminum mounting block in black.
(b) Photograph of the transfer cavity. The cavity is isolated from mechanical vibra-
tions with teflon mounting rods. Temperature stability is achieved with the shown
thermistor and TEC (with fins), in conjunction with a digital PI loop.
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scheme, then:

The experimental cavity was locked to the transfer laser, which was locked to the

transfer cavity which was locked to the ⌘ laser which was locked to the reference laser.

Among the subtleties ignored in the above description is that the transfer cavity

cannot be more absolutely stable than the reference laser to which it is locked at low

frequencies. Since the reference laser has a Lorentzian line of width ⇠ 1MHz, the

experimental and transfer cavity frequencies drift around by a substantial fraction of

this width. It turns out, however, that the absolute experimental cavity frequency

matters only on the scale of �, which is 5.2MHz. In contrast, the drift of the cavity

relative to any probing laser must be stabilized to better than .

With the exception of the reference laser step, the fluctuations in all of the locking

steps listed above add up to give the final cavity-laser linewidth. As such, all locks

must be good to substantially better than a . In what follows, we will describe how

the various challenges implementing these locks were surmounted, such that in the

end, we could sweep the ⌘ laser across the experimental cavity resonance and resolve

a peak of width eff = 2⇡ ⇥ 158(7)kHz⇡ , as shown in figure (9.5). Because eff is

indistinguishable from , the full transfer sequence can be said to stabilize ⌘ relative

to the experimental cavity to much better than .

9.5.3 Narrowing and Locking the ⌘ and Transfer Lasers

The ⌘ and Transfer lasers were locked to the transfer cavity via high-bandwidth

Pound-Drever-Hall Locks. The locks to the transfer cavity used EOM-generated side-

bands at 25MHz and 30MHz for 852 and 817nm, respectively. The 5MHz frequency
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a)

b)

Figure 9.5: (a)Cavity transmission spectrum taken with cavity in lock, by sweeping
the ⌘ laser across the cavity resonance. The observed laser-cavity mutual linewidth
is  = 2⇡ ⇥ 158(7)KHz. (b) An independent cavity ringdown measurement yields
 = 2⇡⇥ 173(12)KHz. The agreement between the two measurements indicates that
the laser has a linewidth �laser ⌧ .
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di↵erence was chosen to minimize crosstalk between lock paths. A typical DFB laser

has an instantaneous linewidth of 1MHz, and so a unity-gain locking bandwidth of

nearly a 1MHz is necessary to narrow such a laser- otherwise we will succeed only in

removing low-frequency noise without placing a substantial fraction of the power in

a narrow carrier.

At low frequencies (up to ⇠ 50KHz), the feedback from the PDH error signal goes

into a Proportional-Integral (PI) lockbox and then to the laser current-controller.

Above 50KHz the phase lag of the current controller and PI-box limit performance,

and and so a direct, high-frequency feedback path is sent to the diode through a bias-

tee and lead-lag filter to compensate for the shift from temperature to carrier density

tuning. The high-frequency loop is shaped via a OPA 657 high GBWP (1.6GHz)

op-amp from Texas instruments. The transfer function rolled back to proportional

at around 100KHz because the finite cavity lifetime rolls the gain o↵ above this

frequency, and a 1/f 2 rollo↵ at unity gain is unstable (see figure (9.6)).

As with all of our cavity locks in the new apparatus (save the 937nm dipole trap),

we lock the cavity to a PDH sideband, rather than the carrier. This is because we

reach the same technical noise performance at substantially lower intra-cavity power

when locked to the sideband. Additionally, it can be quite di�cult (without a lock-

detection scheme) to sweep to resonance and lock the cavity to the carrier, while a

small error o↵set will induce the cavity to sweep and lock to a sideband.

Once the ⌘ laser is stabilized to the transfer cavity, the transfer cavity is locked

via the beatnote between the ⌘ laser and the Reference laser, with a small unity-gain

bandwidth of < 100Hz. This can be achieved with very little bandwidth because the
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Figure 9.6: Transfer Lock Open Loop Behavior (qualitative). Top Fast Path: Solid
curve is full response, from (dotted) bias-tee roll on, (upper dashed) Op-amp loop
filter, and (lower dashed) cavity roll-o↵. Middle Slow Path: Solid curve is full
response, from (dashed) lockbox, and (dotted) current controller rollo↵.
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transfer cavity is very mechanically stable, on the scale of our experiments.

9.5.4 Pre-Narrowing the 817nm Transfer Laser

The transfer laser, purchased from Sarno↵ Corporation, is a DFB laser running

single-mode at 817nm. The diode unfortunately has a linewidth of ⇠ 10MHz, mean-

ing that we have very poor SNR for our PDH lock. Additionally, we would need

substantially more bandwidth to narrow a laser with an instantaneous linewidth of

10MHz than 2MHz wide laser.

We solved this problem by adding adding feedback in the form of a glass-plate (AR

coated on one side) on a piezo at a distance of 14cm from the laser. This glass plate

provides so much optical feedback that it becomes the primary frequency determining

element in the system. Feed-forward to the current is adjusted to maximize the mod-

hop free tuning range, in our case to a value of 1GHz.

9.5.5 Experimental Cavity Stabilization

A PDH lock at 28.6MHz was used to lock the experimental cavity to the 817nm

laser. We hit a serious hitch here, as the cavity exhibited mechanical resonances as

low as 5KHz (see figure (9.7)). The system was liable to oscillate at either the low-

frequency mount resonances, or the higher frequency piezo resonances, depending

upon where we chose to put the unity gain frequency of the loop. We added high-Q

(Q⇠ 20) active notch filters using gyrators as low loss inductors to suppress the various

resonances and make the system more stable, and achieved a unity gain bandwidth

of 1.5KHz.
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Figure 9.7: (a) Mechanical response of the experimental cavity versus drive frequency,
with low frequency resonances at 5 ⇠ 10KHz notched out. The dominant remaining
resonances are at 30KHz. (b) Similar to (a), but with the low high frequency res-
onances notched out, leaving only the low frequency resonances. When running the
experiment we employ both sets of notches to suppress all resonances. In each plot
the upper trace is the magnitude, and the lower trace the phase, of the response.
Noise at frequencies  1KHz is an artifact of the network analyzer.
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When we attempted to observe the cavity linewidth by scanning the ⌘ laser across a

cavity resonance, we observed the line broadened out to more than a Megahertz. This

is less than the atomic linewidth of 5MHz, so the absolute stability requirements are

thus fulfilled. The laser cavity stability can now be improved with a high bandwidth

feedback to the transfer laser itself.6. To do this, we added afrequency shifter in the

path of the transfer-laser to the experimental cavity, and fed back on the transfer laser

accordingly. The frequency shifter we chose was composed of a double-passed AOM

(see figure (9.8)) driven by a VCO. By feeding back on the control voltage to the VCO,

we acquired a fast-feedback path with a bandwidth of ⇠ 200kHz, limited primarily by

the propagation delays of the acoustical wave in the AOM crystal (⌧AOM ⇡ 250ns),

as well as optical and electrical path lengths (⌧prop ⇡ 90ns).

It is important to note that while this fast feedback path does suppress relative

noise between the transfer-laser and the cavity resonance, the absolute stability of

the cavity resonance is probably not improved. The gain in the fast path allows us

to increase the gain in the slow (piezo) path, so one might expect increased noise

suppression. The reality, however, is that it is a comparison of the slow path gain

to the fast path gain, and not the slow-path gain to unity, which determines the

absolute noise suppression. This is because any correction made by the fast path

actually reduces our absolute stability, since the transfer-laser is stably locked to

the transfer-cavity, and fast-path corrections actually adjust its frequency! Since

6If we were to start again, I think it would be wise to mount the experimental cavity on teflon
blocks to suppress vibrational coupling, and drive one cavity mirror with a substantially shorter
piezo with correspondingly higher-frequency mechanical resonances. The reality, however, is that
designing, assembling, testing, cleaning, and installing a new apparatus is very time-consuming, so
we wanted to work with what we had.
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Figure 9.8: Double-passed AOM used as a high-bandwidth frequency shifter for the
transfer laser. The frequency ⌫ is derived from the fractional divider setup described
in the feedforward section.

Gfast � Gslow at the frequency that was previously the unity gain of the slow loop7,

the noise suppression unity-gain bandwidth of the slow loop is not enhanced by the

addition of the fast loop.

9.5.6 ⌘ Feedforward

Because we were forced to feedback not only on the experimental cavity frequency

but also the transfer laser frequency, we also had to feed these corrections forward to

the ⌘ laser frequency. The subtlety is that we could not directly feed the frequency

corrections forward with an AOM or EOM, only to the substantial wavelength di↵er-

ence between 817 and 852nm:

If, in closed loop, the fast past of the experimental cavity lock has a frequency

excursion of �817, this indicates that the length of the experimental cavity must have

7This is usually necessary because the slow loop would otherwise be likely to oscillate at its new
unity gain frequency.
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increased by an amount �L = �Lcav
�

817

⌫
817

. The corresponding correction required for

the 852nm laser to remain on the cavity resonance is �852 = �⌫852
�
L

L
cav

. Combining

these relations yields:

�852 = �817 ⇥ �817

�852
(9.4)

This crucial relation indicates that if we just directly feed the 817nm frequency

correction forward to the 852nm laser, we will be making a 4% error. What this

means is that any gain of the fast path above 25 is wasted, as the compensation on

the 852 path will be incorrect. Put another way, the fast feedback to the 817nm laser

was used to suppress the ⇠ 2MHz jitter of the cavity. This 4% error introduces a

frequency error of 2MHz⇥0.04 = 80KHz, which is a nearly half of a cavity linewidth.

Our actual configuration, shown in figure (9.9), uses a ⇠ 1840MHz VCO, in com-

bination with two frequency dividers, ÷23 and ÷12. The ÷23 is routed to the 817nm

double-passed AOM, while the ÷12 is used to drive the feed-forward to the 852nm

EOM. The ratio of these dividers8 is 23/2
12 = 0.9583, while �

817

�
852

= 0.9589, indicating

that we now have only a 0.06% error in feedforward, corresponding to a maximum

useful gain of 1700.

9.5.7 A Few Technical Details to Remember in Building such

a System

• All lasers need at least 60dB of optical isolation or they become unstable at the

100s of KHz level due to optical feedback from the high-finesse cavities.

8the factor of two numerator comes from the double-pass
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Figure 9.9: Schematic of Experimental Cavity Locking Scheme. Once stabilized to the
transfer cavity, the transfer laser is reflected o↵ of the main cavity in a Pound-Drever-
Hall configuration. The derived error signal has is fed first to the experimental cavity
piezo through a low-frequency feedback box. This locks the cavity to the transfer laser
at low frequencies. At high frequencies the transfer laser is locked to the experimental
cavity via a double-passed AOM. This high-frequency correction must then be fed
forward to the ⌘ laser, through an appropriate frequency multiplication network.
To place the ⌘ laser on the cavity resonance we also need a fixed frequency o↵set
determined by the relative mode numbers of the ⌘ and transfer cavities.
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• All lasers need to be placed as close to the transfer cavity as possible, to minimize

the phase lag arising from path length, and thus maximize the useable feedback

bandwidth.

9.5.8 Putting it all Together: Lock-Points

Once the experimental and transfer cavities are stably locked, the remaining task

is to tune the experimental cavity relative to atomic resonance. The di�culty is that

even if the transfer cavity is stabilized such that one of its modes coincides with ⌘

laser, the (locked) experimental cavity will not have a mode which is resonant with

the ⌘ laser. This results from the small length di↵erence between experimental and

transfer cavities, and the fact that we are performing the experimental cavity lock

using the transfer laser, which is at a substantially di↵erent linewidth from the ⌘

laser.

In order to span the gap, an EOM is used in the ⌘ beam path which goes to

the experimental cavity, to o↵set the laser such that it will be resonant with the

experimental cavity mode. Then, as the length of the transfer cavity is adjusted (via

the beatnote lock of ⌘ to the Reference laser), the experimental cavity follows (via the

transfer-laser locks), and we can tune the experimental cavity to atomic resonance.

The necessary o↵set-frequency for the ⌘ EOM can vary from DC to the free

spectral range of about 11GHz. In practice, it is most convenient for us to work at

around 8GHz (determined by available synthesizers), and so we tune which mode

of the transfer and experimental cavities we lock to to adjust the necessary o↵set

frequency. The transfer cavity is temperature stabilized and may thus be temperature
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X T� T0 T+

E� 15 �460 �934
E0 475 0 �475
E+ 934 460 �15

Table 9.1: Amount of frequency shift, in MHz, necessary for the ⌘ EOM sideband to
remain resonant with the experimental cavity as the transfer and experimental cavity
lengths are jumped by a wavelength of the 817 and 852nm lasers, respectively.

tuned by many FSRs, while the experimental cavity can only be tuned by the ⇠ 4FSRs

accessible via the piezo.

It is straightforward to show that when the transfer and experimental cavity

lengths are adjusted by m and n FSRs, respectively, the requisite shift of the ⌘

o↵set frequency is: �⌫Offset = (m�⌫852
FSR � n�⌫817

FSR)(1 � �
852

�
817

). This expression is

tabulated for increase (+) and decreasing (�) each of the Transfer(T) and ⌘ lasers by

a free spectral range. The numbers given here are good only to approximately 1MHz.

9.6 Optical Lattice

The atoms are loaded into a 937nm intra-cavity optical lattice with a trap depth of

Utrap ⇡ 50µK, estimated from a measured (via parametric heating[46]) trap frequency

!trap = 2⇡ ⇥ 90KHz, arising from a power of ⇡ 1.5mW transmitted through the

cavity9.

9We would actually expect a trap frequency of 160KHz and a trap depth of 190µK for 1.4mW
transmitted through the cavity. We typically find a factor of two discrepancy in trap frequency, when
we measure it by modulating the trap depth at a frequency !

mod

, and looking for a loss resonance at
!

mod

= 2!
trap

. Since the lattice potential is anharmonic, this method will only yield the maximum

trap frequency if heating the coldest atoms causes hotter atoms to rethermalize and leave the trap.
If the rethermalization times are too long then we will observe a trap frequency corresponding to
atoms near the top of the trap, which experience a much smaller trap frequency.
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This trapping has the e↵ect of allowing us to store and manipulate atoms for

hundreds of milliseconds before parametric heating[46] boils the atoms out of the trap.

The radial confinement a↵orded by the trapping ensures that all of the trapped atoms

experience the (maximal) on-axis atom-field coupling, though the incommensurate

nature of the 937 and 852nm standing waves that the axial averaging remains. Any

atom which is trapped is confined to less than an optical wavelength, and is thus in

the Lamb-Dicke limit of recoil-free scattering[29]. This is crucially important because

the cavity lifetime of nearly a µs is on the order of the doppler time for an atom at

10µK, so atoms not in the Lamb-Dicke limit would experience doppler broadening of

the cavity line, and hence a reduction of ⌘.

For Cesium, 937nm is a so-called “magic wavelength”[129, 128]. At this wave-

length, coupling between
�

�62P3/2

↵

and higher excited states ensures that the
�

�62P3/2

↵

state experiences the same stark shift as the
�

�62S1/2

↵

state. The atomic transition is

thus unbroadened by the trapping potential, to lowest order.

We have observed intra-cavity optical depths as high as 30000 for atomic ensembles

loaded into the lattice, as observed by cavity shift.

9.7 Single Atom Detection

As a first step towards a high-e�ciency single-photon detector, we have demon-

strated the e�cient detection of single atoms within the waist of the optical resonator.

A sample of atoms is loaded into the intra-cavity optical lattice, and optically pumped

into Fg = 3. We then shine a weak laser beam on the sample, resonant with the

Fg = 3 ! Fe = 4 transition, which sometimes causes an atom to be transferred from
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Fg = 3 to Fg = 4. To detect these transitions we tune our optical resonator to the

Fg = 4 ! Fe = 5 cycling transition, and probe its transmission with a resonant laser.

When then repump all atoms to Fg = 3, and repeat the process.

In the absence of an atom the transmission will be unity, and in the presence of an

atom it will be suppressed by a factor 1
(1+⌘)2 . In order to not saturate the atom, the

maximum rate at which information (photons) may leak out of a single-sided cavity

is Rmax
out = S

max

�
4

(1+⌘)2

⌘ in the absence of an atom, where Smax ⇡ 1
2 is the maximum

allowable saturation parameter before the transmission begins to increase. For our

average ⌘ ⇡ 2 (averaged over the cavity standing wave and di↵erent Zeeman levels),

we expect Rmax
out = 17µs�1.

We expect a shot-to-shot variation in the observed transmission arising from both

photon shot-noise, and the ⌘ variation caused by the distribution of atoms over the

cavity standing wave. Taking both of these e↵ects into account, we expect to ob-

serve transmission similar to that shown in figure (9.10). Our total detection path

e�ciency10 of q = 4% indicates that to detect an average of Ndet = 10 photons in the

absence of an atom, we will need a time Tmeas = N
det

qRmax

out

= 15µs.

We have verified that our setup is shot-noise limited over several minutes for

⇠ 30 photons transmitted, as shown in figure (9.11)- this means that our laser-cavity

detuning, and laser power, are stable to ⇡ 1p
30

⇡ 3%, into the measured bin size of

approximately 100µs, over the several minute measuring time.

The remaining question, then, is whether we can detect the e↵ect of an atom on

10This e�ciency arises from: Chroma filters to remove 937 and 817nm light, each with ⇠ 85%
transmission at 852nm, SPCM e�ciency of 40% at 852nm, 60% fiber coupling e�ciency, and 25%
cavity out-coupling due to from losses and transmission out of the wrong cavity mirror.
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Figure 9.10: Expected photon number histogram for 1 and 0 atoms intracavity, with
the 1-atom curve averaged over the cavity standing-wave. For this calculation we
choose ⌘peak = 2.
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Figure 9.11: Photon Shot-Noise Limited Detection. The shown data is a histogram of
the detected photon number transmitted through the optical cavity, in the absence of
atoms, into ⇠ 100µs bins, averaged over a few minutes. The model curve is a poisson-
distributed model, and the agreement between data and model indicates that, over a
few minutes, the cavity transmission is stable to 3% into a 100µs bin.
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cavity transmission before it is either heated out of the trap due to recoil heating from

the intra-cavity light, o↵-resonantly pumped back to F = 3, or its signal overrun by

optical pumping backgrounds arising from other atoms.

Figure (9.12) shows the observed histogram into binsizes of 15µs and 70µs. For the

15µs bin, this data indicates that an atom detection e�ciency of approximately 50%

can be achieved, with a dark-count rate of 0.008/trial. For the 70µs bin, the 0 and 1

atom peaks are much better resolved. The small tail between them is likely a result

of background atoms which are pumped to Fg = 4 in the middle of the detection

interval, or the atoms sitting at nodes of the cavity field. The single-atom detection

e�ciency and dark count rates are clearly much improved, but a quantitative estimate

would require a careful study of how far the bridge between zero- and one- atom peaks

goes.

The contribution of atoms at cavity antinodes by using the 2µm dipole lens to

address the atoms, and only addressing those at anti-nodes of the cavity field. 2µm is

su�cient resolution because the beat-period between the intra-cavity lattice at 937nm

and the cavity standing wave at 852nm is 4.7µm.
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Figure 9.12: Single Atom detection. (a) Histogram of detected photon number into
15µs, bins. The fit curve is the weighted sum of three Poisson distributions, presum-
ably indicating 0, 1, and 2 atoms. (a) Histogram of detected photon number into 70µs
bins. The broadening due variation in ⌘ across the standing wave is now greater than
the photon number shot noise, visible from the added structure in the curves. This
broadening means that arbitrary normal- rather than poisson- distributions must be
used to fit the data.
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Conclusions

The work in this thesis began with gaining a deep understanding of the behavior

of magnons and transitioned into implementations of interesting quantum devices

using magnons. Recent work has focused on the construction and characterization of

a new apparatus in the single-atom strong-coupling limit.

It seems fitting, then, that the most promising next step is to combine collective

e↵ects and single atom strong-coupling to build a single-photon transistor or single

photon detector. By loading enough atoms into the intra-cavity lattice to achieve

many-atom strong coupling from the side, the ensemble can be used to e�ciently stop

a single photon[49], and detect the correspondingly generated collective excitations

via the cavity. It is not altogether unreasonable to hope to non-destructively detect

the magnons with some small, but finite probability. The magnons could then be

read back out, realizing a single-photon QND detector.

An alternative, though no less interesting project would be to attempt to de-

terministically load two atoms into the 2µm dipole traps via a collisional blockade

228
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interaction. This would permit high-e�ciency readout of the atomic states, as well

as cavity mediated interactions.
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I. EXPERIMENTAL METHODS

A sample of laser cooled caesium atoms at a typical temperature of 20 µK is optically pumped into the state
|si =

�

�6S1/2;F = 4, m
F

= 4
↵

by two circularly polarized laser beams propagating along a 900 mG magnetic field,
defining a quantization axis. The magnetic field is perpendicular to the vertically oriented optical resonator of finesse
F = 240 and TEM00 waist w

c

= 110 µm.
In order to prepare a single spin excitation, the atoms are driven for 90 ns by a weak “write” laser beam propagating

in the horizontal plane orthogonal to, and polarized along, the quantization axis. The beam frequency is tuned 110
MHz to the red of the |si ! |ei =

�

�6P3/2; 4, 4
↵

transition. This beam has a waist of 210 µm, a typical peak intensity
of 100 mW/cm2, and is directed towards the upper half of the atomic cloud with a typical root-mean-square size of
1 mm. The atoms in the overlap region of the write laser beam and the cavity TEM00 mode are henceforth referred
to as ensemble A.

The resonator TEM00 mode is tuned to be resonant with spontaneous Raman scattering on the |si ! |ei !
|gi =

�

�6S1/2; 3, 3
↵

hyperfine-ground-state changing transition. Detection of an |ei ! |gi “write” photon exiting the
resonator projects the atomic ensemble into a state with a collective spin excitation:

|Gi =
NA
X

i=1

|s1 . . . g
i

. . . s
N

i ei

�

kwrite·�ri cos (�k
cav

· �r
i

). (1)

Here s
j

or g
j

indicates the internal state of the j-th atom, r
j

its position, and �k
write

and �k
cav

are the write beam
and cavity wavevectors. Photon detection is performed with single photon counting modules coupled by single mode
fibers to the optical resonator.

The collective spin excitation can then be converted into a single photon in the cavity mode by application of
a phase-matched1 “read” beam counter-propagating relative to the write beam, tuned 20 MHz to the blue of the
|gi ! |ei transition, with a Rabi frequency of 2⇡ ⇥ 40 MHz. This beam also has a waist of 210 µm, is phase-matched
to the write beam, addresses only sample A, and will henceforth be referred to as �

A

. When the excitation is simply
read out, we routinely achieve a conditional photon retrieval e�ciency R

A

near 40%, referenced to within the cavity.
R

A

is limited by the optical depth N
A

⌘ ⇠ 1 of the sample to R
A

= NA⌘

1+NA⌘

. The total detection e�ciency for a photon

generated inside the cavity is q
e

= 0.11(2), due to the quantum e�ciency of the single photon counting module
(q

spcm

= 0.40(5)), cavity output coupling (q
cav

= 0.43(1)), and fiber coupling and other losses (q
misc

= 0.66(4)).
The excitation can be transferred to a second ensemble B by concurrent application of a secondary read beam,

termed �
B

, during the read process. �
B

has a Rabi frequency of 2⇡⇥70 MHz, the same 210 µm waist size as �
A

, and
the distance between the two beams is 390 µm. By turning �

B

on first, then turning �
A

on, and �
B

o↵, according
to the so-called counter-intuitive pulse sequence2, the excitation can be transferred from sample A to sample B.

We believe that the e�ciency of the transfer process is limited by two factors: The first is the variation of write- and
read- beam intensities across the samples, resulting in imperfect phase matching, and hence re-absorption and free-
space scattering of the generated single photon. The second limiting factor is our small optical depth N

A

⌘ ⇠ N
B

⌘ ⇠ 1.
In the ideal case of perfect phase matching, the transfer e�ciency T

AB

is limited to T
AB

= NA⌘·NB⌘

(1+NA⌘)(1+NB⌘) ⇡ 0.25. We
observe that the transfer e�ciency improves with larger optical depth of the sample. We anticipate that by trapping
the ensembles in two far detuned dipole traps, both of the above limitations may be circumvented.

In demonstrating entanglement between the two samples, the phase of �
A

needs to be jumped between the adiabatic
transfer process, and the interferometric read-out2. This is achieved by jumping the phase of the radio-frequency drive
of the acousto-optic modulator which controls �

A

.
In order to maximize our data collection rate, and also to minimize magnon-loss due to decoherence, we operate

at a separation of 200 ⇠ 300 ns between write, transfer, and read-out. In principle, we could separate the write,
transfer, and read-out by as much as the magnon lifetimes in ensembles A and B. Measurements of these lifetimes
are displayed in Supplementary Fig. 1, with the storage times �

d

=1.3, 1.7 µs for samples A and B, respectively,
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Supplementary Figure 1: Magnon lifetime for collective spin excitations in ensembles A (open squares) and B
(solid circles). A spin excitation is written into sample A, and read out after a variable delay � . The gaussian decay is a
result of the random thermal motion of the atoms destroying the magnon, with a time constant �

A

= 1.3 µs for ensemble A.
After transfer of the excitation to ensemble B, the gaussian decay has a time constant �

B

= 1.7 µs > �
A

, indicating that sample
B is at a lower temperature than sample A. The vertical axis has been rescaled by a factor of 5 for the two curves, to allow for
a more direct comparison of timescales.

indicating temperatures of 50 and 20 µK. The di↵erence is likely due to the recoil heating of ensemble A during the
write process.

II. VERIFICATION OF ENTANGLEMENT BETWEEN ATOMIC ENSEMBLES

We wish to verify the presence of entanglement between the A and B ensembles, as generated by the adiabatic partial
transfer of the spin excitation. Ideally, this entanglement takes the form2 (for � 6= 0, ⇡

2 ): |�,�i = cos � |1i
A

|0i
B

�
sin �ei� |0i

A

|1i
B

, where |ji
k

denotes j magnons stored in sample k. In reality, a density matrix is used to parameterize
the joint state of the two ensembles after detection of the write photon.

The phase � is determined by the relative phase �
T

of the two read beams �
A

, �
B

during the transfer process,
relative to an arbitrarily chosen (classical) phase reference �0 shared between ensembles A and B. We have verified
that �

T

is stable to better than 7� over a time scale of 30 ms (limited by optical path length jitter). We could easily
stabilize or record the classical phase �

T

during the measurement. However, it would not change any of our results
since the optical path length is stable over the microsecond magnon storage time, and the joint readout depends only
on the phase di↵erence �

T

� �
R

, where �
R

is the relative phase of beams �
A

, �
B

during readout relative to the
chosen phase reference �0. To measure the coherence of the two components of the state |�,�i, we vary �

R

relative
to �

T

.
Our method of probing the magnon statistics is to convert the magnons into photons, and measure photon correla-

tions. To this end, we define a density matrix for the magnons in a reduced Hilbert space, compute the concurrence,
and then determine the relevant terms (or appropriate bounds thereupon) from measured photon correlation data.
In several situations we need to set lower bounds on the concurrence because the measured photon statistics do not
completely determine the magnon state.

Calculation of concurrence in terms of reduced density matrix for the magnons

The reduced density matrix conditioned upon detection of a write photon, and truncated into the subspace H1 =
{0, 1}

A

⌦ {0, 1}
B

with at most one magnon in each ensemble A and B, can be written in the form:

⇢at(t = 0) =

0

�

@

m00 0 0 0
0 m10 k� 0
0 k m01 0
0 0 0 m11

1

�

A

. (2)
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States with two or more photons in each ensemble have been ignored (see also the supplemental information for
Ref.3), as these states can be selected out, in principle, by local non-destructive measurements of each sample, and
such measurements cannot increase the entanglement4. In addition, all coherences with di↵erent magnon numbers
in A and B are set to zero. This is because the phase of a non-local state must be defined relative to a reference,
such as provided by the read beams. The phases of these read pump beams can be randomly varied for both
samples together(requiring only classical communication), thus removing the coherences, and at worst reducing the
entanglement of the two ensembles3.

Conditioned upon being in the subspace of the reduced density operator given above, the concurrence is defined as5:
C1 = 1

M

max[0,
p

�1 �
p

�2 �
p

�3 �
p

�4 ], with the �’s defined as the eigenvalues (in decreasing order) of the matrix
⇢�A

y

�B

y

⇢��A

y

�B

y

. For ⇢ = ⇢at(0), this gives C1 = 1
M

max[0, 2(|k| � p
m00m11)]. Unconditionally, the concurrence C

full

is bounded from below by3 M · C1 = max[0, C = 2(|k|�p
m00m11)], with M = m00 +m10 +m01 +m11 the probability

of being in said subspace. To demonstrate entanglement, we need to have C = 2(|k| � p
m00m11) > 0.

Mapping of photon statistics onto magnon statistics, and calculation of concurrence bounds

Because we cannot directly measure the elements of the magnon density operator, we proceed by decomposing the
concurrence into a combination of quantities which we can easily bound with measurements of photon correlations.

It turns out that two di↵erent photon correlation experiments need to be performed in order to determine the
concurrence of the density operator. The simplest way to see this is to rewrite the concurrence bound as:

C = 2 ·
p

m10m01

✓

|k|
p

m10m01
�

r

m00m11

m10m01

◆

= 2m(V �
p

G
AB

), (3)

where V = |k|�
m10m01

, G
AB

= m00m11
m10m01

, m =
p

m10m01.

In what follows, we first address G
AB

and demonstrate that it may be bounded by a loss-insensitive correlation
function of the optical field. We then address V , and show that it can be appropriately bounded by an optically
measured fringe contrast of the jointly-read-out excitation, in spite of the fact that the read-out e�ciencies may be
di↵erent for the two samples.

Conditional cross correlation term

G
AB

appears similar to the magnon-magnon cross correlation function g
AB

= <mAmB>

<mA><mB>

= m11
(m10+m11)(m01+m11)

for ensembles A and B, conditioned upon the detection of a write photon. It should be noted that strictly speaking,
g

AB

has higher order terms like m20, but in our experiment this amounts to a 1% correction to g
AB

, which is much
smaller than the error-bars on g

AB

from finite statistics.
In this section we first show that for g

AB

 1, G
AB

 g
AB

(Theorem 1), using the fact that g
AB

 1 implies
G

AB

 1 (Lemma 1). Next we argue that g
AB

 gphotonic

AB

(Argument 1), where gphotonic

AB

is the quantity which we

can actually measure using photon correlations. At the end, this leaves us with G
AB

 gphotonic

AB

.
In order to show G

AB

 g
AB

for g
AB

 1, we first show G
AB

 1 for g
AB

 1.

Lemma 1. g
AB

 1 implies G
AB

 1.

Proof. g
AB

 1 is equivalent to m11
(m10+m11)(m01+m11)

 1.

A bit of algebra yields m11(m10 + m01 + m11 � 1) + m10m01 � 0.
Identifying m00  1 � m11 � m10 � m01, we arrive at m10m01 � m00m11 � 0, or G

AB

 1.

Theorem 1. g
AB

 1 implies G
AB

 g
AB

.

Proof. We begin with the result of Lemma 1, namely that G
AB

 1 for g
AB

 1.
G

AB

 1 is equivalent to m10m01 � m00m11.
Multiplying through by m11(1 � m00), and noting that 1 � m00 = m10 + m01 + m11 + (1 � M), we find:

m11m10m01(1 � m00) � m00m
2
11(m11 + m10 + m01 + (1 � M)) (4)

and after some algebra this becomes:

m11m10m01 � m11m00[(m10 + m11)(m01 + m11) + m11(1 � M)] (5)
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or
m11

(m10 + m11)(m01 + m11)
� m00m11

m10m01
[1 + (1 � M)

m11

(m10 + m11)(m01 + m11)
] (6)

or finally g
AB

� G
AB

[1 + (1 � M)g
AB

], which gives (using 0  M  1) G
AB

 g
AB

.

Argument 1. g
AB

 gphotonic

AB

.

We sequentially read out the (possibly) stored magnon from each of the two samples, and compute the cross

correlation of the emitted photons, conditioned upon the detection of a write photon. It is well known

6
that in the

absence of backgrounds, losses do not a�ect the cross correlation function. This argument can be applied to the finite

and di�erent magnon-photon conversion e�ciencies for samples A and B as well. The relevant backgrounds in our

experiment are either poissonian, or super-poissonian, and thus gphotonic

AB

� g
AB

.

Hence for gphotonic

AB

 1, G
AB

 gphotonic

AB

, and:

C � 2
p

m10m01[
|k|

p
m10m01

�
q

gphotonic

AB

]. (7)

One might worry that the sequential read-out of the two excitations could artificially produce anti-correlation
between the detection of a photon from sample A, and sample B. While this is in principle possible, it would require
a substantial single-photon non-linearity which is inconsistent with our (maximum) single atom cooperativity7 of

⌘0 = g2/� = 24F/⇡

(kcavwc)2
⇡ 3 ⇥ 10�3 ⌧ 1.

For the parameters of Fig. 3 of Ref. 2 we measure gphotonic

AB

= p11

(p10+p11)(p01+p11)
= 0.21(8).

Visibility term

The first term within the parentheses in Eqn. 3 can be interpreted as a normalized fringe visibility for magnons
within H1. We will demonstrate that a bound on this visibility can be extracted from a measurement of the recovery
e�ciency during a joint readout of the two samples, varying only the relative phases of the two readout beams. We
first argue that varying the relative phases serves only to rotate the phase of the state written in. We then use this fact
to place a bound on V from the measured optical fringe visibility V photonic. Lastly, we bound the error on V photonic

from the experimental inclusion of trials with two- or more magnons in each sample.
Because the pumps are spatially separated and address disjoint collections of atoms, a change in pump beam

phase may actually be re-interpreted as a change in the phase of magnon modes interacting with said beam (via
a corresponding phase change in the magnon annihilation and creation operators8). The important point is that
changing the relative phases of the pumps should have no other impact upon the dynamics of the system.

One might worry that a small spatial overlap of �
A

and �
B

could generate a coupling term which depends upon
the phase �

R

during readout. For our experiment this overlap is far too small to explain the observed fringe contrast.
Furthermore, �

R

is not controlled (only �
T

��
R

is fixed), and thus must be averaged over, washing out e↵ects which
would otherwise depend upon it.

To extract a bound on V from the observed visibility of the photonic system (Fig. 3 of Ref. 2), we can analyze the
time evolution of an arbitrary initial state of the combined atom-cavity system, and compute the expected photonic
fringe visibility in the one excitation subspace (including higher order terms contributes errors smaller by a factor
⇠ g

AA

p10 = 10�2, which is smaller than our statistical error on V photonic, as explained below):

⇢(t = 0, �) =

0

�

@

m00 0 0 0
0 m10 k�ei� 0
0 ke�i� m01 0
0 0 0 m11

1

�

A

⌦ |0i
C C

h0| = ⇢at(t = 0, �) ⌦ |0i
C C

h0| , (8)

where |ji
C

denotes a state with j cavity photons.
The rate of photons leaving the cavity during the readout may be obtained by time evolving ⇢(t = 0, �) and

computing the expectation value of �

2 a†
c

a
c

, where  is the cavity linewidth and a†
c

(a
c

) is the operator which creates
(destroys) a photon in the caivty mode:

R(t,�) =


2
Tr[⇢(t,�)a†

c

a
c

] = m10 |A10(t)|2 +m01 |A01(t)|2 +2 |k| |C(t)|2 cos(� + �(t) + �
k

)+m00↵(t)+m11✏(t), (9)
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where k = |k| ei�k , and the time dependent terms (A10(t), A01(t), C(t), ↵(t), �(t), ✏(t)) are sums of matrix elements
of an arbitrary time-evolution super-operator, and are independent of ⇢(t = 0, �), and �. It can easily be shown that
|C(t)|2  |A10(�)| |A01(�)|, with equality indicating that the system is not polluted by phase jitter and statistical
variations which reduce fringe visibility. The terms ↵(�) and ✏(�) must be real and non-negative, because in principle
one could prepare zero magnons, or one magnon in each sample, and in each case expect to observe a non-negative
cavity emission rate. As such, these two terms can only decrease the photon fringe visibility V photonic = (R

max

�
R

min

)/(R
max

+R
min

) at fixed magnon visibility V . It should be noted that photon backgrounds contribute primarily
to the ↵(�) term. In the presence of such backgrounds, the photon fringe visibility will be less than the actual magnon
visibility.

All that remains is to compute the photonic fringe visibility V photonic, and maximize it with respect to the matrix
elements of time-evolution super-operator:

V photonic =
max

�

R

T

0 R(t)dt � min
�

R

T

0 R(t)dt

max
�

R

T

0 R(t)dt + min
�

R

T

0 R(t)dt


2 |k|
R

T

0 |A10(t)| |A01(t)| dt

m10

R

T

0 |A10(t)|2 dt + m01

R

T

0 |A01(t)|2 dt
(10)


2 |k|

q

R

T

0 |A10(t)|2 dt
R

T

0 |A01(t)|2 dt

m10

R

T

0 |A10(t)|2 dt + m01

R

T

0 |A01(t)|2 dt
 |k|

p
m10m01

= V. (11)

The first inequality results from dropping ↵(t) and ✏(t), and setting |C(t)|2 = |A10(t)| |A01(t)| , �(t) = 0, the worst case
allowed by the positivity of R(t). The second inequality results from application of the Cauchy-Schwartz inequality9.

The third inequality arises from maximizing the photon visibility with respect to
R

T

0 |A10(t)|2 dt/
R

T

0 |A01(t)|2 dt, i.e.,
adjusting the photon retrieval e�ciencies to compensate for an imbalance in magnon populations to maximize the
observed photon fringe contrast.

Finally we show that inclusion in the density matrix of terms outside of H1 introduces errors in V which are
substantially smaller than the existing error-bar for V photonic.

Under the assumption of linearity in the magnon-photon conversion process, one can show that including terms to
next order in photon number results in the following R(t,�) (to lowest order in retrieval e�ciency):

R(t,�) = m00↵(t) + (m10 + m11 + 2m20) |A10(t)|2 + (m01 + m11 + 2m20) |A01(t)|2

+ 2(|k| +
p

2
�

�k20
11

�

� +
p

2
�

�k02
11

�

�) |C(t)|2 cos(� + �(t) + �
k

), (12)

where k��

↵�

is the coherence between the states |↵i
A

|�i
B

and |�i
A

|�i
B

. Here we have already assumed that the higher
order coherence terms are in phase with the lowest order coherence term, which maximizes the observed photonic
coherence, hence placing a lower bound on V . We can next solve for a bound on V photonic following the procedure of
the preceding section:

V photonic 
|k| +

p
2

�

�k20
11

�

� +
p

2
�

�k02
11

�

�

p

(m10 + m11 + 2m20)(m01 + m11 + 2m20)
(13)

Assuming maximal coherence for the higher order terms also places a lower bound on V , so we impose k20
11 =

p
m11m20, k02

11 =
p

m11m02. We then identify V = k�
m10m01

, and using m11 � m10m01gAB

, m20 � m

2
10gAA

2 , m02 �
m

2
01gBB

2 , to set a bound on V :

V � V photonic

p

(1 + g
AB

m01 + g
BB

m10)(1 + g
AB

m10 + g
AA

m01) � p
g

AB

(
p

g
AA

m01 +
p

g
BB

m10) (14)

Using the known recovery e�ciency R
A

, R
B

� 0.40 to map (p10, p01) ! (m10, m01), and minimizing the above
bound with respect to g

BB

(which we did not measure), we find (for g
BB

= 0.28), V � 0.87, well within the statistical
error of V � V photonic = 0.88(4) given by the simpler analysis presented above.

Conclusion

Given that V photonic  V , it is clear that C � 2
p

m10m01[V photonic �
q

gphotonic

AB

]. A lower bound on each of m10

and m01 is set from the measured photon number inside the cavity: C � 2
p

p10p01[V photonic �
q

gphotonic

AB

]. This

justifies Eq. (2) and the subsequent paragraph of Ref. 2, used to establish a lower bound on the concurrence between
the atomic ensembles A and B.
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III. CONCURRENCE FOR POISSONIAN MAGNON DISTRIBUTIONS

The (truncated to the single-excitation subspace in each sample) density matrix for macro-atoms A and B, each
with a coherent state written into it (with means p

A

and p
B

respectively), and a well defined phase between them, is
given by:

⇢
coh

= e�pAe�pB

0

�

@

1 0 0 0
0 p

A

p
p

A

p
B

0
0

p
p

A

p
B

p
B

0
0 0 0 p

A

p
B

1

�

A

. (15)

Noting that C = 2(|k| � p
m00m11), it is immediately clear that for ⇢

coh

, C = 0. One can also use this density
matrix to show that G

AB

=1, V =1. Any phase jitter will decrease V , thus making C < 0, while the concurrence C
full

remains zero.
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Appendix B

Perturbation Theory with

Non-Hermetian Hamiltonians

Suppose we are interested in understanding how a state | 0i of energy ✏0, initially

uncoupled from all other states and the environment, is a↵ected by a very weak

perturbation V̂ . Suppose also that the only eigenvector of the system hamiltonian

H0 that is known is | 0i, and that H0 incorporates loss, and is thus non-hermitian.

We would typically attack this problem by using normal first (or second) order

perturbation theory, but the prescription in standard quantum mechanics textbooks

does not quite apply to non-hermitian Hamiltonians, and in its standard form re-

quires knowledge of the spectrum of eigenvectors and eigenvalues of H0. For large-

dimensional hilbert spaces calculation of the eigenvectors and eigenvalues requires

solving a high-order characteristic equation, and cannot generally be accomplished in

closed form.

We will follow the standard prescription the perturbative expansion as far as it

249
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goes, and then make the necessary corrections for a non-hermetian hamiltonian. The

expression that we end up with will be quite familiar. Following a line of reasoning

similar to the resolvent method[22], we will reinterpret it, arriving at a perturbative

expansion in V̂ which does not require knowledge of the spectrum of H0, and in fact

may be computed in closed form (via a matrix inversion) for any finite dimensional

system. We will require only that H0 be diagonalizable and invertible.

Let us rewrite V̂ ⌘ Ṽ ⌦, where ⌦ is our small parameter. We can now write out

| ti, the exact eigenstate of Ht ⌘ H0 + V̂ as a perturbative expansion in powers of

⌦:

| ti =
X

n

⌦n | ni (B.1)

The corresponding energy ✏t may be written in a similar perturbative expansion:

✏t =
X

n

⌦n✏n (B.2)

Our eigenvalue equation is then:

Ht | ti = ✏t | ti (B.3)

We may now substitute into (B.3) the perturbative expansions in powers of ⌦,

and match the powers of ⌦. We arrive at equations of the form:

⌦m : H0 | mi + Ṽ | m�1i =
m
X

n=0

✏n | m�ni (B.4)

Thus far everything we have done follows the standard prescription for pertur-

bation theory. The standard perturbative techniques now make use of the bras hn|,

which are eigenvectors of H0, and satisfy hn |mi = �n,m. We do not have this lux-

ury, because the (unknown) bra hn| corresponding to the (unknown) ket |ni does not
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necessarily satisfy hn |mi = �n,m. We can only be sure that this is the case if H0 is

hermitian, and it need not be!

Instead let us specify a single bra h c
0| such that:

h c
0 | 0 i = 1

h c
0 |ni = 0 (B.5)

Where |ni are the (unknown) eigenvectors of H0, excluding | 0i. Such a h c
0| must

exist, as H0 is invertible and diagonalizable. We apply it to (B.4) and after simplifi-

cation arrive at:

✏n =
D

 c
0

�

�

�

Ṽ
�

�

�

 n�1

E

�
n�1
X

m=1

✏m h c
0 | n�m i (B.6)

Solving (B.3) for | ni, we find:

| ni =
1

H0 � "01

 

n�1
X

m=0

✏n�m | mi � Ṽ | n�1i
!

(B.7)

Together, (B.6) and (B.7) form recurrence relations which may be used to compute

| ti and ✏t to all orders. The important point is that once H0 has been written in

matrix form (in any orthonormal basis), then 1
H

0

�"
0

1 ⌘ (H0 � "01)�1, where X�1 is

the matrix-inverse of X.

Without loss of generality, we put any component of V̂ into H0 which makes
D

 c
0

�

�

�

Ṽ
�

�

�

 0

E

non-zero. We may now compute the first two orders of the energy and
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wavefunction correction:

✏1 =
D

 c
0

�

�

�

Ṽ
�

�

�

 0

E

= 0

✏2 =

⌧

 c
0

�

�

�

�

Ṽ Q̃
1

H0 � ✏01
Q̃Ṽ

�

�

�

�

 0

�

| 1i =
1

H0 � ✏01
Q̃Ṽ | 0i

| 2i =
1

H0 � ✏01
Q̃Ṽ

1

H0 � ✏01
Q̃Ṽ | 0i (B.8)

Where Q̃ ⌘ 1 � | 0i h c
0| projects onto the subspace orthogonal to | 0i.

(B.8) is the central result of this appendix. As an example of its application, we

now use it to compute the transmission spectrum of a cavity containing an atom.

Transmission Spectrum of a Cavity Coupled to a Single Atom

In the limit of 0 or 1 excitations in the system, we have three accessible levels. |0i

is a ground state atom with no photons in the cavity, |Ei is an excited atom and no

cavity photons, and |Ci is a ground state atom and one cavity photon. The probe

beam constitutes a weak perturbation to | 0i ⌘ |0i, coupling it to |Ci, so V̂ and H0

are given by:

H0 = �lc |0i h0| + |Ei hE| (i�
2

+ �ac) + |Ci hC| i
2

+ g(|Ei hC| + hC| |Ei)

V̂ = ⌦(|Ci h0| + |0i hC|) (B.9)

Where the energy o↵set �lc is the detuning of the probe beam from cavity-resonance

(which has been defined as our zero of energy). Because H0 does not couple |0i to

the other states, we may now write out the 2⇥2 matrix describing H0 in the strongly

coupled manifold of |Ei and |Gi. We note that V̂ = ⌦Ṽ where Ṽ = (|Ci h0|+h0| |Ci).

The cavity transmitted field is proportional to
⌦

a†↵ = hC | t i, which we may now
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compute to first order in ⌦ using (B.8):

hEi /
⌦

a†↵ ⇡ hC | t i ⇡
�i2⌦



(1 � i�
la

/2 ) + ⌘

1�i
�

ac

+�

la

�/2

(B.10)

This expression accurately reproduces vacuum rabi splittings, cavity shifts, and so

forth, so long as the atom/cavity system is probed well below saturation. This method

may be used to model a variety of experiments with a discrete set of levels coupled by

a (possibly) non-hermitian hamiltonian H0. We have found it to be terrifically useful

for understanding the magnon-light coupling in the presence of multiple excited states,

improper beam and atom polarizations, and multiple samples- we can diagonalize an

arbitrarily large matrix, though we quite likely cannot compute its eigenvectors!

The second order corrections may be used to compute autocorrelations of trans-

mitted/scattered fields. Care must be taken, however, to ensure that the expressions

are not used to a higher order than they are valid. In the preceding example, for

instance, the second order correction should not be used as we have not included

couplings to the two excitation manifold in either H0 or V̂ .



Appendix C

Bayesian Estimates of Rates from

Counting Statistics

Suppose we are attempting to estimate the rate r of a poisson process, given the

detection of N events in a time T . Naively, we would expect hri = N
T , and in the

large N limit this is a good estimate. For N small we much be more careful, as the

distributions are not at all normal!

For our model we will follow closely the reasoning of reference [39]. We take

a Bayesian approach to our statistical analysis, and treat r as a random variable

sampled from a distribution- our detection of N photons should be an indication of

r, as described by Baye’s rule:

P (r|N) = P (N |r) P (r)

P (N)
(C.1)

Where for a poisson process P (N |r) = e�rT (rT )N

N ! . If we assume no prior knowledge

of the rate r, we can take a flat prior P (r) = 1
r
max

, P (N) = 1
r
max

T , and ultimately let

rmax ! 1. From here we can compute the maximum likelihood estimate of the rate

254
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rMLE = N
T , the mean value of the rate hri =

R

rP (r|N)dr = N+1
T , and the standard

deviation �r =
q

R

(r2 � r)P (r|N)dr =
p
N+1
T .

The equal-probability 1� confidence interval [hri � ��
r , hri + �+

r ] may then be

computed by solving the equations:

erfc(1) =

Z hri+�+

r

hri
P (r|N)dr =

Z hri

hri���
r

P (r|N)dr (C.2)

The most significant consequence of this result is that we compute g2 according

to:

g2 =
2(N2 + 1)N0

N2
1

(C.3)

Where the extra 1 in the numerator reflects the calculation of this appendix, and we

have ignored corresponding o↵sets for N0 and N1 because we have many counts, so the

distinction between N and N+1 is unimportant. A similar method should be used to

compute quantities such as
D

1
N

2

E

and
D

1
NA

2

NB

2

E

, and their confidence intervals. While

the former expression may be computed in closed form, the latter seems to require a

numerical solution.



Appendix D

The Fabry-Perot Transmission

Spectrum

We briefly introduce how to calculate the cavity transmission spectrum in the

absence of atoms, using only classical electromagnetic theory.

Consider an electric field of (scalar) amplitude Ein incident on a Fabry-Perot

cavity, represented by a system of two high-reflectivity mirrors, as shown in figure

(D.1). To determine the field everywhere, one can either compute the field in each

of the three regions in the figure separately and match at the boundaries, or follow a

wave-packet through the system as it reflects, repeatedly, o↵ of the various surfaces.

Figure D.1: A Resonant Cavity.
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The two approaches are equivalent, but the author prefers the latter.

The field which is transmitted through the first mirror has amplitude Eint12, and

it then travels a distance L and is transmitted through the second mirror, yielding a

transmitted field Eint12t23eikL.

This is not the whole story, however, as the field could have reflected o↵ of the

second mirror, travelled back to the first, reflected o↵ of the first, travelled back to

the second, and then been transmitted. This yields a total field EintA12t
B
23e

ikL(1 +

rB22e
ikLrA22e

ikL.

This is still not the whole story, as the light can bounce back and forth infinitely

many times before exiting the cavity. Adding up all of these amplitudes and recog-

nizing the geometric nature of the series yields:

Eout

Ein
=

tA12t
B
23e

ikL

1 � rA22r
B
22e

i2kL
(D.1)

The cavity transmission is maximized when 2kL = 2⇡N , where N is any integer. To

obtain the behavior near resonance we choose k = 2⇡N
2L + �

c , expand the exponential

in the denominator and simplify:

Eout

Ein
=

tA12t
B
23e

ikL

1 � rA22r
B
22

1

1 � i �
c

2L

rA

22

rB

22

1�rA

22

rB

22

(D.2)

Assuming the mirrors are lossless and identical and using the beamsplitter relations[111]

gives:

Eout

Ein
=

eikL

1 � i �
/2

(D.3)

Where  = �⌫
FSR

F is the cavity power transmission full width at half maximum,

�⌫FSR = 2⇡ c
2L is the cavity free spectral range, and F = 2⇡ rA

22

rB

22

1�rA

22

rB

22

⇡ 2⇡
2T is the cavity

finesse. The free spectral range tells us the separation in frequency between adjacent
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cavity transmission maxima, while the the finesse tells us the ratio of the separation

between- to the width of- the maxima. The finesse contains the same information

as the quality factor Q, but is smaller by a factor of !
c

�⌫
FSR

. This is sensible because

the resolving power is not actually Q but F , as the cavity has many transmission

maxima, not just one.

If one wishes to include cavity mirror losses within the expressions, it is clear that

within each pass through the cavity, an additional multiplicative factor of (1� 1
2Lcav)

must be included. The algebra is grungy and not terribly interesting, and has the

e↵ect of reducing the peak cavity transmission from 1 down to approximately T 2

(T+L/2)2
1

The cavity finesse is reduce to F = 2⇡
2T+L

cav

, and the linewidth is increased accordingly.

It is also clear that a photon in the cavity comes out the jth end of the cavity with a

probability Pj = T
j

T
1

+T
2

+L
cav

.

It is worth mentioning that in practice the two cavity mirrors never have identical

transmissions, and so the transmitted fraction is given by Tcav = 4T
1

T
2

(T
1

+T
2

+L
cav

)2 . This

expression is less than unity even in the absence of loss (Lcav = 0), Tcav < 1 unless

T1 = T2. In practice this is one of the tools that we use to sort out the transmissions

of the two mirrors which make up our Fabry-Perot cavity.

This method may also be used to incorporate the e↵ect of atoms on cavity trans-

mission as well. Including the absorption and indices of refraction of the atoms using

linear dispersion theory, the quantum mechanically predicted vacuum rabi splitting

may even be reproduced[130].

1There is technically a factor of (1 � L
cav

) in the numerator. In practical cavities with F � 100
this term is entirely negligible compared to the e↵ect of the loss on the (nearly zero) denominator.
As such we drop this and all other loss terms from the numerator.



Appendix E

Machine Drawings of New

Apparatus
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